""" =============================================== Reconstruct with Generalized Q-Sampling Imaging =============================================== We show how to apply Generalized Q-Sampling Imaging [Yeh2010]_ to diffusion MRI datasets. You can think of GQI as an analytical version of DSI orientation distribution function (ODF) (Garyfallidis, PhD thesis, 2012). First import the necessary modules: """ import numpy as np from dipy.core.gradients import gradient_table from dipy.data import get_fnames, get_sphere from dipy.io.gradients import read_bvals_bvecs from dipy.io.image import load_nifti from dipy.reconst.gqi import GeneralizedQSamplingModel from dipy.direction import peaks_from_model """ Download and get the data filenames for this tutorial. """ fraw, fbval, fbvec = get_fnames('taiwan_ntu_dsi') """ img contains a nibabel Nifti1Image object (data) and gtab contains a ``GradientTable`` object (gradient information e.g. b-values). For example to read the b-values it is possible to write:: print(gtab.bvals) Load the raw diffusion data and the affine. """ data, affine, voxel_size = load_nifti(fraw, return_voxsize=True) bvals, bvecs = read_bvals_bvecs(fbval, fbvec) bvecs[1:] = (bvecs[1:] / np.sqrt(np.sum(bvecs[1:] * bvecs[1:], axis=1))[:, None]) gtab = gradient_table(bvals, bvecs) print('data.shape (%d, %d, %d, %d)' % data.shape) """ data.shape ``(96, 96, 60, 203)`` This dataset has anisotropic voxel sizes, therefore reslicing is necessary. Instantiate the model and apply it to the data. """ gqmodel = GeneralizedQSamplingModel(gtab, sampling_length=3) """ The parameter ``sampling_length`` is used here to Lets just use one slice only from the data. """ dataslice = data[:, :, data.shape[2] // 2] mask = dataslice[..., 0] > 50 gqfit = gqmodel.fit(dataslice, mask=mask) """ Load an ODF reconstruction sphere """ sphere = get_sphere('repulsion724') """ Calculate the ODFs with this specific sphere """ ODF = gqfit.odf(sphere) print('ODF.shape (%d, %d, %d)' % ODF.shape) """ ODF.shape ``(96, 96, 724)`` Using ``peaks_from_model`` we can find the main peaks of the ODFs and other properties. """ gqpeaks = peaks_from_model(model=gqmodel, data=dataslice, sphere=sphere, relative_peak_threshold=.5, min_separation_angle=25, mask=mask, return_odf=False, normalize_peaks=True) gqpeak_values = gqpeaks.peak_values """ ``gqpeak_indices`` show which sphere points have the maximum values. """ gqpeak_indices = gqpeaks.peak_indices """ It is also possible to calculate GFA. """ GFA = gqpeaks.gfa print('GFA.shape (%d, %d)' % GFA.shape) """ With parameter ``return_odf=True`` we can obtain the ODF using ``gqpeaks.ODF`` """ gqpeaks = peaks_from_model(model=gqmodel, data=dataslice, sphere=sphere, relative_peak_threshold=.5, min_separation_angle=25, mask=mask, return_odf=True, normalize_peaks=True) """ This ODF will be of course identical to the ODF calculated above as long as the same data and mask are used. """ print(np.sum(gqpeaks.odf != ODF) == 0) """ True The advantage of using ``peaks_from_model`` is that it calculates the ODF only once and saves it or deletes if it is not necessary to keep. .. [Yeh2010] Yeh, F-C et al., Generalized Q-sampling imaging, IEEE Transactions on Medical Imaging, vol 29, no 9, 2010. .. include:: ../links_names.inc """