""" ============================================================== Crossing invariant fiber response function with FORECAST model ============================================================== We show how to obtain a voxel specific response function in the form of axially symmetric tensor and the fODF using the FORECAST model from [Anderson2005]_ , [Kaden2016]_ and [Zucchelli2017]_. First import the necessary modules: """ import numpy as np import matplotlib.pyplot as plt from dipy.reconst.forecast import ForecastModel from dipy.viz import actor, window from dipy.data import fetch_hbn, get_sphere import nibabel as nib import os.path as op from dipy.core.gradients import gradient_table """ Download and read the data for this tutorial. Our implementation of FORECAST requires multi-shell `data.fetch_hbn()` provides data that was acquired using b-values of 1000 and 2000 as part of the Healthy Brain Network study [Alexander2017]_ and was preprocessed and quality controlled in the HBN-POD2 dataset [RichieHalford2022]_. """ data_path = fetch_hbn(["NDARAA948VFH"])[1] dwi_path = op.join( data_path, "derivatives", "qsiprep", "sub-NDARAA948VFH", "ses-HBNsiteRU", "dwi") img = nib.load(op.join( dwi_path, "sub-NDARAA948VFH_ses-HBNsiteRU_acq-64dir_space-T1w_desc-preproc_dwi.nii.gz")) gtab = gradient_table( op.join(dwi_path, "sub-NDARAA948VFH_ses-HBNsiteRU_acq-64dir_space-T1w_desc-preproc_dwi.bval"), op.join(dwi_path, "sub-NDARAA948VFH_ses-HBNsiteRU_acq-64dir_space-T1w_desc-preproc_dwi.bvec")) data = np.asarray(img.dataobj) mask_img = nib.load( op.join(dwi_path, "sub-NDARAA948VFH_ses-HBNsiteRU_acq-64dir_space-T1w_desc-brain_mask.nii.gz")) brain_mask = mask_img.get_fdata() """ Let us consider only a single slice for the FORECAST fitting """ data_small = data[:, :, 50:51] mask_small = brain_mask[:, :, 50:51] """ Instantiate the FORECAST Model. "sh_order" is the spherical harmonics order used for the fODF. dec_alg is the spherical deconvolution algorithm used for the FORECAST basis fitting, in this case we used the Constrained Spherical Deconvolution (CSD) algorithm. """ fm = ForecastModel(gtab, sh_order=6, dec_alg='CSD') """ Fit the FORECAST to the data """ f_fit = fm.fit(data_small, mask_small) """ Calculate the crossing invariant tensor indices [Kaden2016]_ : the parallel diffusivity, the perpendicular diffusivity, the fractional anisotropy and the mean diffusivity. """ d_par = f_fit.dpar d_perp = f_fit.dperp fa = f_fit.fractional_anisotropy() md = f_fit.mean_diffusivity() """ Show the indices and save them in FORECAST_indices.png. """ fig = plt.figure(figsize=(6, 6)) ax1 = fig.add_subplot(2, 2, 1, title='parallel diffusivity') ax1.set_axis_off() ind = ax1.imshow(d_par[:, :, 0].T, interpolation='nearest', origin='lower', cmap=plt.cm.gray) plt.colorbar(ind, shrink=0.6) ax2 = fig.add_subplot(2, 2, 2, title='perpendicular diffusivity') ax2.set_axis_off() ind = ax2.imshow(d_perp[:, :, 0].T, interpolation='nearest', origin='lower', cmap=plt.cm.gray) plt.colorbar(ind, shrink=0.6) ax3 = fig.add_subplot(2, 2, 3, title='fractional anisotropy') ax3.set_axis_off() ind = ax3.imshow(fa[:, :, 0].T, interpolation='nearest', origin='lower', cmap=plt.cm.gray) plt.colorbar(ind, shrink=0.6) ax4 = fig.add_subplot(2, 2, 4, title='mean diffusivity') ax4.set_axis_off() ind = ax4.imshow(md[:, :, 0].T, interpolation='nearest', origin='lower', cmap=plt.cm.gray) plt.colorbar(ind, shrink=0.6) plt.savefig('FORECAST_indices.png', dpi=300, bbox_inches='tight') """ .. figure:: FORECAST_indices.png :align: center **FORECAST scalar indices**. """ """ Load an ODF reconstruction sphere """ sphere = get_sphere('repulsion724') """ Compute the fODFs. """ odf = f_fit.odf(sphere) print('fODF.shape (%d, %d, %d, %d)' % odf.shape) """ Display a part of the fODFs """ odf_actor = actor.odf_slicer(odf[30:60, 30:60, :], sphere=sphere, colormap='plasma', scale=0.6) scene = window.Scene() scene.add(odf_actor) window.record(scene, out_path='fODFs.png', size=(600, 600), magnification=4) """ .. figure:: fODFs.png :align: center **Fiber Orientation Distribution Functions, in a small ROI of the brain**. References ---------- .. [Anderson2005] Anderson A. W., "Measurement of Fiber Orientation Distributions Using High Angular Resolution Diffusion Imaging", Magnetic Resonance in Medicine, 2005. .. [Kaden2016] Kaden E. et al., "Quantitative Mapping of the Per-Axon Diffusion Coefficients in Brain White Matter", Magnetic Resonance in Medicine, 2016. .. [Zucchelli2017] Zucchelli E. et al., "A generalized SMT-based framework for Diffusion MRI microstructural model estimation", MICCAI Workshop on Computational DIFFUSION MRI (CDMRI), 2017. .. [Alexander2017] Alexander LM, Escalera J, Ai L, et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci Data. 2017;4:170181. .. [RichieHalford2022] Richie-Halford A, Cieslak M, Ai L, et al. An analysis-ready and quality controlled resource for pediatric brain white-matter research. Scientific Data. 2022;9(1):1-27. .. include:: ../links_names.inc """