""" =================================== Brain segmentation with median_otsu =================================== We show how to extract brain information and mask from a b0 image using DIPY_'s ``segment.mask`` module. First import the necessary modules: """ import numpy as np from dipy.data import get_fnames from dipy.io.image import load_nifti, save_nifti from dipy.segment.mask import median_otsu ############################################################################### # Download and read the data for this tutorial. # # The ``scil_b0`` dataset contains different data from different companies and # models. For this example, the data comes from a 1.5 Tesla Siemens MRI. data_fnames = get_fnames('scil_b0') data, affine = load_nifti(data_fnames[1]) data = np.squeeze(data) ############################################################################### # Segment the brain using DIPY's ``mask`` module. # # ``median_otsu`` returns the segmented brain data and a binary mask of the # brain. It is possible to fine tune the parameters of ``median_otsu`` # (``median_radius`` and ``num_pass``) if extraction yields incorrect results # but the default parameters work well on most volumes. For this example, # we used 2 as ``median_radius`` and 1 as ``num_pass`` b0_mask, mask = median_otsu(data, median_radius=2, numpass=1) ############################################################################### # Saving the segmentation results is very easy. We need the ``b0_mask``, and the # binary mask volumes. The affine matrix which transform the image's coordinates # to the world coordinates is also needed. Here, we choose to save both images # in ``float32``. fname = 'se_1.5t' save_nifti(fname + '_binary_mask.nii.gz', mask.astype(np.float32), affine) save_nifti(fname + '_mask.nii.gz', b0_mask.astype(np.float32), affine) ############################################################################### # Quick view of the results middle slice using ``matplotlib``. import matplotlib.pyplot as plt from dipy.core.histeq import histeq sli = data.shape[2] // 2 plt.figure('Brain segmentation') plt.subplot(1, 2, 1).set_axis_off() plt.imshow(histeq(data[:, :, sli].astype('float')).T, cmap='gray', origin='lower') plt.subplot(1, 2, 2).set_axis_off() plt.imshow(histeq(b0_mask[:, :, sli].astype('float')).T, cmap='gray', origin='lower') plt.savefig('median_otsu.png') ############################################################################### # .. figure:: median_otsu.png # :align: center # # An application of median_otsu for brain segmentation. # # ``median_otsu`` can also automatically crop the outputs to remove the largest # possible number of background voxels. This makes outputted data significantly # smaller. Auto-cropping in ``median_otsu`` is activated by setting the # ``autocrop`` parameter to ``True``. b0_mask_crop, mask_crop = median_otsu(data, median_radius=4, numpass=4, autocrop=True) ############################################################################### # Saving cropped data using nibabel as demonstrated previously. # # .. include:: ../links_names.inc save_nifti(fname + '_binary_mask_crop.nii.gz', mask_crop.astype(np.float32), affine) save_nifti(fname + '_mask_crop.nii.gz', b0_mask_crop.astype(np.float32), affine)