dipy
For more information, please visit http://dipy.org
align -- Registration, streamline alignment, volume resampling
boots -- Bootstrapping algorithms
core -- Spheres, gradient tables
core.geometry -- Spherical geometry, coordinate and vector manipulation
core.meshes -- Point distributions on the sphere
data -- Small testing datasets
external -- Interfaces to external tools such as FSL
io -- Loading/saving of dpy datasets
reconst -- Signal reconstruction modules (tensor, spherical harmonics,
diffusion spectrum, etc.)
segment -- Tractography segmentation
sims -- MRI phantom signal simulation
tracking -- Tractography, metrics for streamlines
viz -- Visualization and GUIs
bench |
Run benchmarks for module using nose. |
get_info () |
|
setup_test () |
Set numpy print options to “legacy” for new versions of numpy |
test |
Run tests for module using nose. |
dipy.
bench
(label='fast', verbose=1, extra_argv=None)Run benchmarks for module using nose.
Parameters: |
|
---|---|
Returns: |
|
Notes
Benchmarks are like tests, but have names starting with “bench” instead of “test”, and can be found under the “benchmarks” sub-directory of the module.
Each NumPy module exposes bench in its namespace to run all benchmarks for it.
Examples
>>> success = np.lib.bench()
Running benchmarks for numpy.lib
...
using 562341 items:
unique:
0.11
unique1d:
0.11
ratio: 1.0
nUnique: 56230 == 56230
...
OK
>>> success
True
dipy.
setup_test
()Set numpy print options to “legacy” for new versions of numpy
If imported into a file, pytest will run this before any doctests.
References
https://github.com/numpy/numpy/commit/710e0327687b9f7653e5ac02d222ba62c657a718 https://github.com/numpy/numpy/commit/734b907fc2f7af6e40ec989ca49ee6d87e21c495 https://github.com/nipy/nibabel/pull/556
dipy.
test
(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, raise_warnings=None, timer=False)Run tests for module using nose.
Parameters: |
|
---|---|
Returns: |
|
Notes
Each NumPy module exposes test in its namespace to run all tests for it. For example, to run all tests for numpy.lib:
>>> np.lib.test()
Examples
>>> result = np.lib.test()
Running unit tests for numpy.lib
...
Ran 976 tests in 3.933s
OK
>>> result.errors
[]
>>> result.knownfail
[]