reconst

bench Run benchmarks for module using nose.
test Run tests for module using nose.

Module: reconst.base

Base-classes for reconstruction models and reconstruction fits.

All the models in the reconst module follow the same template: a Model object is used to represent the abstract properties of the model, that are independent of the specifics of the data . These properties are reused whenver fitting a particular set of data (different voxels, for example).

ReconstFit(model, data) Abstract class which holds the fit result of ReconstModel
ReconstModel(gtab) Abstract class for signal reconstruction models

Module: reconst.benchmarks

Module: reconst.benchmarks.bench_bounding_box

bench_bounding_box()
bounding_box(vol) Compute the bounding box of nonzero intensity voxels in the volume.
measure(code_str[, times, label]) Return elapsed time for executing code in the namespace of the caller.

Module: reconst.benchmarks.bench_csd

ConstrainedSphericalDeconvModel(gtab, response)

Methods

GradientTable(gradients[, big_delta, …]) Diffusion gradient information
bench_csdeconv([center, width])
num_grad(gtab)
read_stanford_labels() Read stanford hardi data and label map

Module: reconst.benchmarks.bench_peaks

Benchmarks for peak finding

Run all benchmarks with:

import dipy.reconst as dire
dire.bench()

With Pytest, Run this benchmark with:

pytest -svv -c bench.ini /path/to/bench_peaks.py
bench_local_maxima()
get_sphere([name]) provide triangulated spheres
local_maxima Local maxima of a function evaluated on a discrete set of points.
measure(code_str[, times, label]) Return elapsed time for executing code in the namespace of the caller.
unique_edges(faces[, return_mapping]) Extract all unique edges from given triangular faces.

Module: reconst.benchmarks.bench_squash

Benchmarks for fast squashing

Run all benchmarks with:

import dipy.reconst as dire
dire.bench()

With Pytest, Run this benchmark with:

pytest -svv -c bench.ini /path/to/bench_squash.py
bench_quick_squash()
measure(code_str[, times, label]) Return elapsed time for executing code in the namespace of the caller.
ndindex(shape) An N-dimensional iterator object to index arrays.
old_squash(arr[, mask, fill]) Try and make a standard array from an object array
quick_squash Try and make a standard array from an object array
reduce(function, sequence[, initial]) Apply a function of two arguments cumulatively to the items of a sequence, from left to right, so as to reduce the sequence to a single value.

Module: reconst.benchmarks.bench_vec_val_sum

Benchmarks for vec / val summation routine

Run benchmarks with:

import dipy.reconst as dire
dire.bench()

With Pytest, Run this benchmark with:

pytest -svv -c bench.ini /path/to/bench_vec_val_sum.py
bench_vec_val_vect()
measure(code_str[, times, label]) Return elapsed time for executing code in the namespace of the caller.
randn(d0, d1, …, dn) Return a sample (or samples) from the “standard normal” distribution.
vec_val_vect Vectorize vecs.diag(vals).`vecs`.T for last 2 dimensions of vecs
with_einsum(f)

Module: reconst.cache

Cache Cache values based on a key object (such as a sphere or gradient table).
auto_attr(func) Decorator to create OneTimeProperty attributes.

Module: reconst.cross_validation

Cross-validation analysis of diffusion models

range(stop) range(start, stop[, step]) -> range object
coeff_of_determination(data, model[, axis]) Calculate the coefficient of determination for a model prediction, relative
kfold_xval(model, data, folds, *model_args, …) Perform k-fold cross-validation to generate out-of-sample predictions for each measurement.

Module: reconst.csdeconv

AxSymShResponse(S0, dwi_response[, bvalue]) A simple wrapper for response functions represented using only axially symmetric, even spherical harmonic functions (ie, m == 0 and n even).
ConstrainedSDTModel(gtab, ratio[, …])

Methods

ConstrainedSphericalDeconvModel(gtab, response)

Methods

SphHarmFit(model, shm_coef, mask) Diffusion data fit to a spherical harmonic model
SphHarmModel(gtab) To be subclassed by all models that return a SphHarmFit when fit.
TensorModel(gtab[, fit_method, return_S0_hat]) Diffusion Tensor
range(stop) range(start, stop[, step]) -> range object
auto_response(gtab, data[, roi_center, …]) Automatic estimation of response function using FA.
cart2sphere(x, y, z) Return angles for Cartesian 3D coordinates x, y, and z
csdeconv(dwsignal, X, B_reg[, tau, …]) Constrained-regularized spherical deconvolution (CSD) [1]
estimate_response(gtab, evals, S0) Estimate single fiber response function
fa_inferior(FA, fa_thr) Check that the FA is lower than the FA threshold
fa_superior(FA, fa_thr) Check that the FA is greater than the FA threshold
fa_trace_to_lambdas([fa, trace])
forward_sdeconv_mat(r_rh, n) Build forward spherical deconvolution matrix
forward_sdt_deconv_mat(ratio, n[, r2_term]) Build forward sharpening deconvolution transform (SDT) matrix
fractional_anisotropy(evals[, axis]) Fractional anisotropy (FA) of a diffusion tensor.
get_sphere([name]) provide triangulated spheres
lazy_index(index) Produces a lazy index
lpn(n, z) Legendre function of the first kind.
multi_voxel_fit(single_voxel_fit) Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition
ndindex(shape) An N-dimensional iterator object to index arrays.
odf_deconv(odf_sh, R, B_reg[, lambda_, tau, …]) ODF constrained-regularized spherical deconvolution using the Sharpening Deconvolution Transform (SDT) [1], [2].
odf_sh_to_sharp(odfs_sh, sphere[, basis, …]) Sharpen odfs using the sharpening deconvolution transform [2]
peaks_from_model(model, data, sphere, …[, …]) Fit the model to data and computes peaks and metrics
quad(func, a, b[, args, full_output, …]) Compute a definite integral.
real_sph_harm(m, n, theta, phi) Compute real spherical harmonics.
real_sym_sh_basis(sh_order, theta, phi) Samples a real symmetric spherical harmonic basis at point on the sphere
recursive_response(gtab, data[, mask, …]) Recursive calibration of response function using peak threshold
response_from_mask(gtab, data, mask) Estimate the response function from a given mask.
sh_to_rh(r_sh, m, n) Spherical harmonics (SH) to rotational harmonics (RH)
single_tensor(gtab[, S0, evals, evecs, snr]) Simulated Q-space signal with a single tensor.
sph_harm_ind_list(sh_order) Returns the degree (n) and order (m) of all the symmetric spherical harmonics of degree less then or equal to sh_order.
vec2vec_rotmat(u, v) rotation matrix from 2 unit vectors

Module: reconst.dki

Classes and functions for fitting the diffusion kurtosis model

DiffusionKurtosisFit(model, model_params) Class for fitting the Diffusion Kurtosis Model
DiffusionKurtosisModel(gtab[, fit_method]) Class for the Diffusion Kurtosis Model
ReconstModel(gtab) Abstract class for signal reconstruction models
TensorFit(model, model_params[, model_S0])
Attributes:
range(stop) range(start, stop[, step]) -> range object
Wcons(k_elements) Construct the full 4D kurtosis tensors from its 15 independent elements
Wrotate(kt, Basis) Rotate a kurtosis tensor from the standard Cartesian coordinate system to another coordinate system basis
Wrotate_element(kt, indi, indj, indk, indl, B) Computes the the specified index element of a kurtosis tensor rotated to the coordinate system basis B.
apparent_kurtosis_coef(dki_params, sphere[, …]) Calculates the apparent kurtosis coefficient (AKC) in each direction of a sphere [1].
axial_kurtosis(dki_params[, min_kurtosis, …]) Computes axial Kurtosis (AK) from the kurtosis tensor.
carlson_rd(x, y, z[, errtol]) Computes the Carlson’s incomplete elliptic integral of the second kind defined as:
carlson_rf(x, y, z[, errtol]) Computes the Carlson’s incomplete elliptic integral of the first kind defined as:
cart2sphere(x, y, z) Return angles for Cartesian 3D coordinates x, y, and z
check_multi_b(gtab, n_bvals[, non_zero, bmag]) Check if you have enough different b-values in your gradient table
decompose_tensor(tensor[, min_diffusivity]) Returns eigenvalues and eigenvectors given a diffusion tensor
design_matrix(gtab) Constructs B design matrix for DKI
directional_diffusion(dt, V[, min_diffusivity]) Calculates the apparent diffusion coefficient (adc) in each direction of a sphere for a single voxel [1].
directional_diffusion_variance(kt, V[, …]) Calculates the apparent diffusion variance (adv) in each direction of a sphere for a single voxel [1].
directional_kurtosis(dt, md, kt, V[, …]) Calculates the apparent kurtosis coefficient (akc) in each direction of a sphere for a single voxel [1].
dki_prediction(dki_params, gtab[, S0]) Predict a signal given diffusion kurtosis imaging parameters.
from_lower_triangular(D) Returns a tensor given the six unique tensor elements
get_sphere([name]) provide triangulated spheres
kurtosis_maximum(dki_params[, sphere, gtol, …]) Computes kurtosis maximum value
local_maxima Local maxima of a function evaluated on a discrete set of points.
lower_triangular(tensor[, b0]) Returns the six lower triangular values of the tensor and a dummy variable if b0 is not None
mean_diffusivity(evals[, axis]) Mean Diffusivity (MD) of a diffusion tensor.
mean_kurtosis(dki_params[, min_kurtosis, …]) Computes mean Kurtosis (MK) from the kurtosis tensor [1].
ndindex(shape) An N-dimensional iterator object to index arrays.
ols_fit_dki(design_matrix, data) Computes ordinary least squares (OLS) fit to calculate the diffusion tensor and kurtosis tensor using a linear regression diffusion kurtosis model [1].
radial_kurtosis(dki_params[, min_kurtosis, …]) Radial Kurtosis (RK) of a diffusion kurtosis tensor [1].
sphere2cart(r, theta, phi) Spherical to Cartesian coordinates
split_dki_param(dki_params) Extract the diffusion tensor eigenvalues, the diffusion tensor eigenvector matrix, and the 15 independent elements of the kurtosis tensor from the model parameters estimated from the DKI model
vec_val_vect Vectorize vecs.diag(vals).`vecs`.T for last 2 dimensions of vecs
wls_fit_dki(design_matrix, data) Computes weighted linear least squares (WLS) fit to calculate the diffusion tensor and kurtosis tensor using a weighted linear regression diffusion kurtosis model [1].

Module: reconst.dki_micro

Classes and functions for fitting the DKI-based microstructural model

DiffusionKurtosisFit(model, model_params) Class for fitting the Diffusion Kurtosis Model
DiffusionKurtosisModel(gtab[, fit_method]) Class for the Diffusion Kurtosis Model
KurtosisMicrostructuralFit(model, model_params) Class for fitting the Diffusion Kurtosis Microstructural Model
KurtosisMicrostructureModel(gtab[, fit_method]) Class for the Diffusion Kurtosis Microstructural Model
axial_diffusivity(evals[, axis]) Axial Diffusivity (AD) of a diffusion tensor.
axonal_water_fraction(dki_params[, sphere, …]) Computes the axonal water fraction from DKI [1].
decompose_tensor(tensor[, min_diffusivity]) Returns eigenvalues and eigenvectors given a diffusion tensor
diffusion_components(dki_params[, sphere, …]) Extracts the restricted and hindered diffusion tensors of well aligned fibers from diffusion kurtosis imaging parameters [1].
directional_diffusion(dt, V[, min_diffusivity]) Calculates the apparent diffusion coefficient (adc) in each direction of a sphere for a single voxel [1].
directional_kurtosis(dt, md, kt, V[, …]) Calculates the apparent kurtosis coefficient (akc) in each direction of a sphere for a single voxel [1].
dkimicro_prediction(params, gtab[, S0]) Signal prediction given the DKI microstructure model parameters.
dti_design_matrix(gtab[, dtype]) Constructs design matrix for DTI weighted least squares or least squares fitting.
from_lower_triangular(D) Returns a tensor given the six unique tensor elements
get_sphere([name]) provide triangulated spheres
kurtosis_maximum(dki_params[, sphere, gtol, …]) Computes kurtosis maximum value
lower_triangular(tensor[, b0]) Returns the six lower triangular values of the tensor and a dummy variable if b0 is not None
mean_diffusivity(evals[, axis]) Mean Diffusivity (MD) of a diffusion tensor.
ndindex(shape) An N-dimensional iterator object to index arrays.
radial_diffusivity(evals[, axis]) Radial Diffusivity (RD) of a diffusion tensor.
split_dki_param(dki_params) Extract the diffusion tensor eigenvalues, the diffusion tensor eigenvector matrix, and the 15 independent elements of the kurtosis tensor from the model parameters estimated from the DKI model
tortuosity(hindered_ad, hindered_rd) Computes the tortuosity of the hindered diffusion compartment given its axial and radial diffusivities
trace(evals[, axis]) Trace of a diffusion tensor.
vec_val_vect Vectorize vecs.diag(vals).`vecs`.T for last 2 dimensions of vecs

Module: reconst.dsi

Cache Cache values based on a key object (such as a sphere or gradient table).
DiffusionSpectrumDeconvFit(model, data)

Methods

DiffusionSpectrumDeconvModel(gtab[, …])

Methods

DiffusionSpectrumFit(model, data)

Methods

DiffusionSpectrumModel(gtab[, qgrid_size, …])

Methods

OdfFit(model, data)

Methods

OdfModel(gtab) An abstract class to be sub-classed by specific odf models
LR_deconv(prop, psf[, numit, acc_factor]) Perform Lucy-Richardson deconvolution algorithm on a 3D array.
create_qspace(gtab, origin) create the 3D grid which holds the signal values (q-space)
create_qtable(gtab, origin) create a normalized version of gradients
fftn(x[, shape, axes, overwrite_x]) Return multidimensional discrete Fourier transform.
fftshift(x[, axes]) Shift the zero-frequency component to the center of the spectrum.
gen_PSF(qgrid_sampling, siz_x, siz_y, siz_z) Generate a PSF for DSI Deconvolution by taking the ifft of the binary q-space sampling mask and truncating it to keep only the center.
half_to_full_qspace(data, gtab) Half to full Cartesian grid mapping
hanning_filter(gtab, filter_width, origin) create a hanning window
ifftshift(x[, axes]) The inverse of fftshift.
map_coordinates(input, coordinates[, …]) Map the input array to new coordinates by interpolation.
multi_voxel_fit(single_voxel_fit) Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition
pdf_interp_coords(sphere, rradius, origin) Precompute coordinates for ODF calculation from the PDF
pdf_odf(Pr, rradius, interp_coords) Calculates the real ODF from the diffusion propagator(PDF) Pr
project_hemisph_bvecs(gtab) Project any near identical bvecs to the other hemisphere
threshold_propagator(P[, estimated_snr]) Applies hard threshold on the propagator to remove background noise for the deconvolution.

Module: reconst.dti

Classes and functions for fitting tensors

ReconstModel(gtab) Abstract class for signal reconstruction models
TensorFit(model, model_params[, model_S0])
Attributes:
TensorModel(gtab[, fit_method, return_S0_hat]) Diffusion Tensor
range(stop) range(start, stop[, step]) -> range object
apparent_diffusion_coef(q_form, sphere) Calculate the apparent diffusion coefficient (ADC) in each direction of a
auto_attr(func) Decorator to create OneTimeProperty attributes.
axial_diffusivity(evals[, axis]) Axial Diffusivity (AD) of a diffusion tensor.
color_fa(fa, evecs) Color fractional anisotropy of diffusion tensor
decompose_tensor(tensor[, min_diffusivity]) Returns eigenvalues and eigenvectors given a diffusion tensor
design_matrix(gtab[, dtype]) Constructs design matrix for DTI weighted least squares or least squares fitting.
determinant(q_form) The determinant of a tensor, given in quadratic form
deviatoric(q_form) Calculate the deviatoric (anisotropic) part of the tensor [1].
eig_from_lo_tri(data[, min_diffusivity]) Calculates tensor eigenvalues/eigenvectors from an array containing the lower diagonal form of the six unique tensor elements.
eigh(a[, UPLO]) Iterate over np.linalg.eigh if it doesn’t support vectorized operation
fractional_anisotropy(evals[, axis]) Fractional anisotropy (FA) of a diffusion tensor.
from_lower_triangular(D) Returns a tensor given the six unique tensor elements
geodesic_anisotropy(evals[, axis]) Geodesic anisotropy (GA) of a diffusion tensor.
get_sphere([name]) provide triangulated spheres
gradient_table(bvals[, bvecs, big_delta, …]) A general function for creating diffusion MR gradients.
isotropic(q_form) Calculate the isotropic part of the tensor [Rd0568a744381-1].
iter_fit_tensor([step]) Wrap a fit_tensor func and iterate over chunks of data with given length
linearity(evals[, axis]) The linearity of the tensor [1]
lower_triangular(tensor[, b0]) Returns the six lower triangular values of the tensor and a dummy variable if b0 is not None
mean_diffusivity(evals[, axis]) Mean Diffusivity (MD) of a diffusion tensor.
mode(q_form) Mode (MO) of a diffusion tensor [1].
nlls_fit_tensor(design_matrix, data[, …]) Fit the tensor params using non-linear least-squares.
norm(q_form) Calculate the Frobenius norm of a tensor quadratic form
ols_fit_tensor(design_matrix, data[, …]) Computes ordinary least squares (OLS) fit to calculate self-diffusion tensor using a linear regression model [1].
pinv(a[, rcond]) Vectorized version of numpy.linalg.pinv
planarity(evals[, axis]) The planarity of the tensor [1]
quantize_evecs(evecs[, odf_vertices]) Find the closest orientation of an evenly distributed sphere
radial_diffusivity(evals[, axis]) Radial Diffusivity (RD) of a diffusion tensor.
restore_fit_tensor(design_matrix, data[, …]) Use the RESTORE algorithm [Chang2005] to calculate a robust tensor fit
sphericity(evals[, axis]) The sphericity of the tensor [1]
tensor_prediction(dti_params, gtab, S0) Predict a signal given tensor parameters.
trace(evals[, axis]) Trace of a diffusion tensor.
vec_val_vect Vectorize vecs.diag(vals).`vecs`.T for last 2 dimensions of vecs
vector_norm(vec[, axis, keepdims]) Return vector Euclidean (L2) norm
wls_fit_tensor(design_matrix, data[, …]) Computes weighted least squares (WLS) fit to calculate self-diffusion tensor using a linear regression model [1].

Module: reconst.forecast

Cache Cache values based on a key object (such as a sphere or gradient table).
ForecastFit(model, data, sh_coef, d_par, d_perp)
Attributes:
ForecastModel(gtab[, sh_order, lambda_lb, …]) Fiber ORientation Estimated using Continuous Axially Symmetric Tensors (FORECAST) [1,2,3]_.
OdfFit(model, data)

Methods

OdfModel(gtab) An abstract class to be sub-classed by specific odf models
cart2sphere(x, y, z) Return angles for Cartesian 3D coordinates x, y, and z
csdeconv(dwsignal, X, B_reg[, tau, …]) Constrained-regularized spherical deconvolution (CSD) [1]
find_signal_means(b_unique, data_norm, …) Calculate the mean signal for each shell.
forecast_error_func(x, b_unique, E) Calculates the difference between the mean signal calculated using the parameter vector x and the average signal E using FORECAST and SMT
forecast_matrix(sh_order, d_par, d_perp, bvals) Compute the FORECAST radial matrix
get_sphere([name]) provide triangulated spheres
lb_forecast(sh_order) Returns the Laplace-Beltrami regularization matrix for FORECAST
leastsq(func, x0[, args, Dfun, full_output, …]) Minimize the sum of squares of a set of equations.
multi_voxel_fit(single_voxel_fit) Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition
optional_package(name[, trip_msg]) Return package-like thing and module setup for package name
psi_l(l, b)
real_sph_harm(m, n, theta, phi) Compute real spherical harmonics.
rho_matrix(sh_order, vecs) Compute the SH matrix \(\rho\)
warn Issue a warning, or maybe ignore it or raise an exception.

Module: reconst.fwdti

Classes and functions for fitting tensors without free water contamination

FreeWaterTensorFit(model, model_params) Class for fitting the Free Water Tensor Model
FreeWaterTensorModel(gtab[, fit_method]) Class for the Free Water Elimination Diffusion Tensor Model
ReconstModel(gtab) Abstract class for signal reconstruction models
TensorFit(model, model_params[, model_S0])
Attributes:
cholesky_to_lower_triangular(R) Convert Cholesky decompostion elements to the diffusion tensor elements
decompose_tensor(tensor[, min_diffusivity]) Returns eigenvalues and eigenvectors given a diffusion tensor
design_matrix(gtab[, dtype]) Constructs design matrix for DTI weighted least squares or least squares fitting.
from_lower_triangular(D) Returns a tensor given the six unique tensor elements
fwdti_prediction(params, gtab[, S0, Diso]) Signal prediction given the free water DTI model parameters.
lower_triangular(tensor[, b0]) Returns the six lower triangular values of the tensor and a dummy variable if b0 is not None
lower_triangular_to_cholesky(tensor_elements) Perfoms Cholesky decomposition of the diffusion tensor
multi_voxel_fit(single_voxel_fit) Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition
ndindex(shape) An N-dimensional iterator object to index arrays.
nls_fit_tensor(gtab, data[, mask, Diso, …]) Fit the water elimination tensor model using the non-linear least-squares.
nls_iter(design_matrix, sig, S0[, Diso, …]) Applies non linear least squares fit of the water free elimination model to single voxel signals.
vec_val_vect Vectorize vecs.diag(vals).`vecs`.T for last 2 dimensions of vecs
wls_fit_tensor(gtab, data[, Diso, mask, …]) Computes weighted least squares (WLS) fit to calculate self-diffusion tensor using a linear regression model [1].
wls_iter(design_matrix, sig, S0[, Diso, …]) Applies weighted linear least squares fit of the water free elimination model to single voxel signals.

Module: reconst.gqi

Classes and functions for generalized q-sampling

Cache Cache values based on a key object (such as a sphere or gradient table).
GeneralizedQSamplingFit(model, data)

Methods

GeneralizedQSamplingModel(gtab[, method, …])

Methods

OdfFit(model, data)

Methods

OdfModel(gtab) An abstract class to be sub-classed by specific odf models
equatorial_maximum(vertices, odf, pole, width)
equatorial_zone_vertices(vertices, pole[, width]) finds the ‘vertices’ in the equatorial zone conjugate to ‘pole’ with width half ‘width’ degrees
gfa(samples) The general fractional anisotropy of a function evaluated on the unit sphere
local_maxima Local maxima of a function evaluated on a discrete set of points.
multi_voxel_fit(single_voxel_fit) Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition
normalize_qa(qa[, max_qa]) Normalize quantitative anisotropy.
npa(self, odf[, width]) non-parametric anisotropy
odf_sum(odf)
patch_maximum(vertices, odf, pole, width)
patch_sum(vertices, odf, pole, width)
patch_vertices(vertices, pole, width) find ‘vertices’ within the cone of ‘width’ degrees around ‘pole’
polar_zone_vertices(vertices, pole[, width]) finds the ‘vertices’ in the equatorial band around the ‘pole’ of radius ‘width’ degrees
remove_similar_vertices Remove vertices that are less than theta degrees from any other
squared_radial_component(x[, tol]) Part of the GQI2 integral
triple_odf_maxima(vertices, odf, width)
upper_hemi_map(v) maps a 3-vector into the z-upper hemisphere

Module: reconst.interpolate

Interpolators wrap arrays to allow the array to be indexed in continuous coordinates

This module uses the trackvis coordinate system, for more information about this coordinate system please see dipy.tracking.utils The following modules also use this coordinate system: dipy.tracking.utils dipy.tracking.integration dipy.reconst.interpolate

Interpolator(data, voxel_size) Class to be subclassed by different interpolator types
NearestNeighborInterpolator(data, voxel_size) Interpolates data using nearest neighbor interpolation
OutsideImage
TriLinearInterpolator(data, voxel_size) Interpolates data using trilinear interpolation
array(object[, dtype, copy, order, subok, ndmin]) Create an array.
trilinear_interp Interpolates vector from 4D data at 3D point given by index

Module: reconst.ivim

Classes and functions for fitting ivim model

IvimFit(model, model_params)
Attributes:
IvimModelLM(gtab[, split_b_D, split_b_S0, …]) Ivim model
IvimModelVP(gtab[, maxiter, xtol])

Methods

LooseVersion([vstring]) Version numbering for anarchists and software realists.
ReconstModel(gtab) Abstract class for signal reconstruction models
IvimModel(gtab[, fit_method]) Selector function to switch between the 2-stage Levenberg-Marquardt based NLLS fitting method (also containing the linear fit): LM and the Variable Projections based fitting method: VarPro.
f_D_star_error(params, gtab, signal, S0, D) Error function used to fit f and D_star keeping S0 and D fixed
f_D_star_prediction(params, gtab, S0, D) Function used to predict IVIM signal when S0 and D are known by considering f and D_star as the unknown parameters.
ivim_model_selector(gtab[, fit_method]) Selector function to switch between the 2-stage Levenberg-Marquardt based NLLS fitting method (also containing the linear fit): LM and the Variable Projections based fitting method: VarPro.
ivim_prediction(params, gtab) The Intravoxel incoherent motion (IVIM) model function.
least_squares(fun, x0[, jac, bounds, …]) Solve a nonlinear least-squares problem with bounds on the variables.
multi_voxel_fit(single_voxel_fit) Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition
optional_package(name[, trip_msg]) Return package-like thing and module setup for package name

Module: reconst.mapmri

Cache Cache values based on a key object (such as a sphere or gradient table).
MapmriFit(model, mapmri_coef, mu, R, lopt[, …])
Attributes:
MapmriModel(gtab[, radial_order, …]) Mean Apparent Propagator MRI (MAPMRI) [1] of the diffusion signal.
Optimizer(fun, x0[, args, method, jac, …])
Attributes:
ReconstFit(model, data) Abstract class which holds the fit result of ReconstModel
ReconstModel(gtab) Abstract class for signal reconstruction models
b_mat(index_matrix) Calculates the B coefficients from [1] Eq.
b_mat_isotropic(index_matrix) Calculates the isotropic B coefficients from [1] Fig 8.
binomialfloat(n, k) Custom Binomial function
cart2sphere(x, y, z) Return angles for Cartesian 3D coordinates x, y, and z
create_rspace(gridsize, radius_max) Create the real space table, that contains the points in which to compute the pdf.
delta(n, m)
factorial2(n[, exact]) Double factorial.
gcv_cost_function(weight, args) The GCV cost function that is iterated [4]
generalized_crossvalidation(data, M, LR[, …]) Generalized Cross Validation Function [Rb690cd738504-1] eq.
generalized_crossvalidation_array(data, M, LR) Generalized Cross Validation Function [1] eq.
genlaguerre(n, alpha[, monic]) Generalized (associated) Laguerre polynomial.
gradient_table(bvals[, bvecs, big_delta, …]) A general function for creating diffusion MR gradients.
hermite(n[, monic]) Physicist’s Hermite polynomial.
isotropic_scale_factor(mu_squared) Estimated isotropic scaling factor _[1] Eq.
map_laplace_s(n, m) R(m,n) static matrix for Laplacian regularization [R932dd40ca52e-1] eq.
map_laplace_t(n, m) L(m, n) static matrix for Laplacian regularization [Reb78d789d6c4-1] eq.
map_laplace_u(n, m) S(n, m) static matrix for Laplacian regularization [Rb93dd9dab8c9-1] eq.
mapmri_STU_reg_matrices(radial_order) Generates the static portions of the Laplacian regularization matrix according to [R1d585103467a-1] eq.
mapmri_index_matrix(radial_order) Calculates the indices for the MAPMRI [1] basis in x, y and z.
mapmri_isotropic_K_mu_dependent(…) Computes mu dependent part of M.
mapmri_isotropic_K_mu_independent(…) Computes mu independent part of K.
mapmri_isotropic_M_mu_dependent(…) Computed the mu dependent part of the signal design matrix.
mapmri_isotropic_M_mu_independent(…) Computed the mu independent part of the signal design matrix.
mapmri_isotropic_index_matrix(radial_order) Calculates the indices for the isotropic MAPMRI basis [1] Fig 8.
mapmri_isotropic_laplacian_reg_matrix(…) Computes the Laplacian regularization matrix for MAP-MRI’s isotropic implementation [R156f27ca005f-1] eq.
mapmri_isotropic_laplacian_reg_matrix_from_index_matrix(…) Computes the Laplacian regularization matrix for MAP-MRI’s isotropic implementation [Rdcc29394f577-1] eq.
mapmri_isotropic_odf_matrix(radial_order, …) Compute the isotropic MAPMRI ODF matrix [1] Eq.
mapmri_isotropic_odf_sh_matrix(radial_order, …) Compute the isotropic MAPMRI ODF matrix [1] Eq.
mapmri_isotropic_phi_matrix(radial_order, mu, q) Three dimensional isotropic MAPMRI signal basis function from [1] Eq.
mapmri_isotropic_psi_matrix(radial_order, …) Three dimensional isotropic MAPMRI propagator basis function from [1] Eq.
mapmri_isotropic_radial_pdf_basis(j, l, mu, r) Radial part of the isotropic 1D-SHORE propagator basis [1] eq.
mapmri_isotropic_radial_signal_basis(j, l, …) Radial part of the isotropic 1D-SHORE signal basis [1] eq.
mapmri_laplacian_reg_matrix(ind_mat, mu, …) Puts the Laplacian regularization matrix together [Rc66aaccd07c1-1] eq.
mapmri_odf_matrix(radial_order, mu, s, vertices) Compute the MAPMRI ODF matrix [1] Eq.
mapmri_phi_1d(n, q, mu) One dimensional MAPMRI basis function from [1] Eq.
mapmri_phi_matrix(radial_order, mu, q_gradients) Compute the MAPMRI phi matrix for the signal [1] eq.
mapmri_psi_1d(n, x, mu) One dimensional MAPMRI propagator basis function from [1] Eq.
mapmri_psi_matrix(radial_order, mu, rgrad) Compute the MAPMRI psi matrix for the propagator [1] eq.
mfactorial factorial(x) -> Integral
multi_voxel_fit(single_voxel_fit) Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition
optional_package(name[, trip_msg]) Return package-like thing and module setup for package name
real_sph_harm(m, n, theta, phi) Compute real spherical harmonics.
sfactorial(n[, exact]) The factorial of a number or array of numbers.
sph_harm_ind_list(sh_order) Returns the degree (n) and order (m) of all the symmetric spherical harmonics of degree less then or equal to sh_order.
warn Issue a warning, or maybe ignore it or raise an exception.

Module: reconst.multi_voxel

Tools to easily make multi voxel models

CallableArray An array which can be called like a function
MultiVoxelFit(model, fit_array, mask) Holds an array of fits and allows access to their attributes and methods
ReconstFit(model, data) Abstract class which holds the fit result of ReconstModel
as_strided(x[, shape, strides, subok, writeable]) Create a view into the array with the given shape and strides.
multi_voxel_fit(single_voxel_fit) Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition
ndindex(shape) An N-dimensional iterator object to index arrays.

Module: reconst.odf

OdfFit(model, data)

Methods

OdfModel(gtab) An abstract class to be sub-classed by specific odf models
ReconstFit(model, data) Abstract class which holds the fit result of ReconstModel
ReconstModel(gtab) Abstract class for signal reconstruction models
gfa(samples) The general fractional anisotropy of a function evaluated on the unit sphere
minmax_normalize(samples[, out]) Min-max normalization of a function evaluated on the unit sphere

Module: reconst.peaks

InTemporaryDirectory([suffix, prefix, dir]) Create, return, and change directory to a temporary directory
PeaksAndMetrics
Attributes:
PeaksAndMetricsDirectionGetter Deterministic Direction Getter based on peak directions.
Sphere([x, y, z, theta, phi, xyz, faces, edges]) Points on the unit sphere.
repeat(object [,times]) for the specified number of times.
xrange alias of builtins.range
Pool Returns a process pool object
cpu_count Returns the number of CPUs in the system
gfa(samples) The general fractional anisotropy of a function evaluated on the unit sphere
local_maxima Local maxima of a function evaluated on a discrete set of points.
ndindex(shape) An N-dimensional iterator object to index arrays.
peak_directions(odf, sphere[, …]) Get the directions of odf peaks.
peak_directions_nl(sphere_eval[, …]) Non Linear Direction Finder.
peaks_from_model(model, data, sphere, …[, …]) Fit the model to data and computes peaks and metrics
remove_similar_vertices Remove vertices that are less than theta degrees from any other
reshape_peaks_for_visualization(peaks) Reshape peaks for visualization.
search_descending i in descending array a so a[i] < a[0] * relative_threshold
sh_to_sf_matrix(sphere, sh_order[, …]) Matrix that transforms Spherical harmonics (SH) to spherical function (SF).
warn Issue a warning, or maybe ignore it or raise an exception.

Module: reconst.qtdmri

Cache Cache values based on a key object (such as a sphere or gradient table).
QtdmriFit(model, qtdmri_coef, us, ut, …)

Methods

QtdmriModel(gtab[, radial_order, …]) The q:math:tau-dMRI model [1] to analytically and continuously represent the q:math:tau diffusion signal attenuation over diffusion sensitization q and diffusion time \(\tau\).
GCV_cost_function(weight, arguments) Generalized Cross Validation Function that is iterated [1].
H(value) Step function of H(x)=1 if x>=0 and zero otherwise.
angular_basis_EAP_opt(j, l, m, r, theta, phi)
angular_basis_opt(l, m, q, theta, phi) Angular basis independent of spatial scaling factor us.
cart2sphere(x, y, z) Return angles for Cartesian 3D coordinates x, y, and z
create_rt_space_grid(grid_size_r, …) Generates EAP grid (for potential positivity constraint).
design_matrix_spatial(bvecs, qvals[, dtype]) Constructs design matrix for DTI weighted least squares or least squares fitting.
elastic_crossvalidation(b0s_mask, E, M, L, lopt) cross-validation function to find the optimal weight of alpha for sparsity regularization when also Laplacian regularization is used.
factorial(n[, exact]) The factorial of a number or array of numbers.
factorial2(n[, exact]) Double factorial.
fmin_l_bfgs_b(func, x0[, fprime, args, …]) Minimize a function func using the L-BFGS-B algorithm.
generalized_crossvalidation(data, M, LR[, …]) Generalized Cross Validation Function [1].
genlaguerre(n, alpha[, monic]) Generalized (associated) Laguerre polynomial.
gradient_table_from_gradient_strength_bvecs(…) A general function for creating diffusion MR gradients.
l1_crossvalidation(b0s_mask, E, M[, …]) cross-validation function to find the optimal weight of alpha for sparsity regularization
multi_voxel_fit(single_voxel_fit) Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition
optional_package(name[, trip_msg]) Return package-like thing and module setup for package name
part1_reg_matrix_tau(ind_mat, ut) Partial temporal Laplacian regularization matrix following Appendix B in [1].
part23_iso_reg_matrix_q(ind_mat, us) Partial spherical spatial Laplacian regularization matrix following the equation below Eq.
part23_reg_matrix_q(ind_mat, U_mat, T_mat, us) Partial cartesian spatial Laplacian regularization matrix following second line of Eq.
part23_reg_matrix_tau(ind_mat, ut) Partial temporal Laplacian regularization matrix following Appendix B in [1].
part4_iso_reg_matrix_q(ind_mat, us) Partial spherical spatial Laplacian regularization matrix following the equation below Eq.
part4_reg_matrix_q(ind_mat, U_mat, us) Partial cartesian spatial Laplacian regularization matrix following equation Eq.
part4_reg_matrix_tau(ind_mat, ut) Partial temporal Laplacian regularization matrix following Appendix B in [1].
qtdmri_anisotropic_scaling(data, q, bvecs, tau) Constructs design matrix for fitting an exponential to the diffusion time points.
qtdmri_eap_matrix(radial_order, time_order, …) Constructs the design matrix as a product of 3 separated radial, angular and temporal design matrices.
qtdmri_eap_matrix_(radial_order, time_order, …)
qtdmri_index_matrix(radial_order, time_order) Computes the SHORE basis order indices according to [1].
qtdmri_isotropic_eap_matrix(radial_order, …) Constructs the design matrix as a product of 3 separated radial, angular and temporal design matrices.
qtdmri_isotropic_eap_matrix_(radial_order, …)
qtdmri_isotropic_index_matrix(radial_order, …) Computes the SHORE basis order indices according to [1].
qtdmri_isotropic_laplacian_reg_matrix(…[, …]) Computes the spherical qt-dMRI Laplacian regularization matrix.
qtdmri_isotropic_scaling(data, q, tau) Constructs design matrix for fitting an exponential to the diffusion time points.
qtdmri_isotropic_signal_matrix(radial_order, …)
qtdmri_isotropic_signal_matrix_(…[, …])
qtdmri_isotropic_to_mapmri_matrix(…) Generates the matrix that maps the spherical qtdmri coefficients to MAP-MRI coefficients.
qtdmri_laplacian_reg_matrix(ind_mat, us, ut) Computes the cartesian qt-dMRI Laplacian regularization matrix.
qtdmri_mapmri_isotropic_normalization(j, l, u0) Normalization factor for Spherical MAP-MRI basis.
qtdmri_mapmri_normalization(mu) Normalization factor for Cartesian MAP-MRI basis.
qtdmri_number_of_coefficients(radial_order, …) Computes the total number of coefficients of the qtdmri basis given a radial and temporal order.
qtdmri_signal_matrix(radial_order, …) Constructs the design matrix as a product of 3 separated radial, angular and temporal design matrices.
qtdmri_signal_matrix_(radial_order, …[, …]) Function to generate the qtdmri signal basis.
qtdmri_temporal_normalization(ut) Normalization factor for the temporal basis
qtdmri_to_mapmri_matrix(radial_order, …) Generates the matrix that maps the qtdmri coefficients to MAP-MRI coefficients.
radial_basis_EAP_opt(j, l, us, r)
radial_basis_opt(j, l, us, q) Spatial basis dependent on spatial scaling factor us
real_sph_harm(m, n, theta, phi) Compute real spherical harmonics.
temporal_basis(o, ut, tau) Temporal basis dependent on temporal scaling factor ut
visualise_gradient_table_G_Delta_rainbow(gtab) This function visualizes a q-tau acquisition scheme as a function of gradient strength and pulse separation (big_delta).
warn Issue a warning, or maybe ignore it or raise an exception.

Module: reconst.sfm

The Sparse Fascicle Model.

This is an implementation of the sparse fascicle model described in [R204bb22f26e5-Rokem2015]. The multi b-value version of this model is described in [R204bb22f26e5-Rokem2014].

[R204bb22f26e5-Rokem2015]Ariel Rokem, Jason D. Yeatman, Franco Pestilli, Kendrick N. Kay, Aviv Mezer, Stefan van der Walt, Brian A. Wandell (2015). Evaluating the accuracy of diffusion MRI models in white matter. PLoS ONE 10(4): e0123272. doi:10.1371/journal.pone.0123272
[R204bb22f26e5-Rokem2014]Ariel Rokem, Kimberly L. Chan, Jason D. Yeatman, Franco Pestilli, Brian A. Wandell (2014). Evaluating the accuracy of diffusion models at multiple b-values with cross-validation. ISMRM 2014.
Cache Cache values based on a key object (such as a sphere or gradient table).
ExponentialIsotropicFit(model, params) A fit to the ExponentialIsotropicModel object, based on data.
ExponentialIsotropicModel(gtab) Representing the isotropic signal as a fit to an exponential decay function with b-values
IsotropicFit(model, params) A fit object for representing the isotropic signal as the mean of the diffusion-weighted signal.
IsotropicModel(gtab) A base-class for the representation of isotropic signals.
ReconstFit(model, data) Abstract class which holds the fit result of ReconstModel
ReconstModel(gtab) Abstract class for signal reconstruction models
SparseFascicleFit(model, beta, S0, iso)

Methods

SparseFascicleModel(gtab[, sphere, …])

Methods

auto_attr(func) Decorator to create OneTimeProperty attributes.
nanmean(a[, axis, dtype, out, keepdims]) Compute the arithmetic mean along the specified axis, ignoring NaNs.
optional_package(name[, trip_msg]) Return package-like thing and module setup for package name
sfm_design_matrix(gtab, sphere, response[, mode]) Construct the SFM design matrix

Module: reconst.shm

Tools for using spherical harmonic models to fit diffusion data

References

Aganj, I., et al. 2009. ODF Reconstruction in Q-Ball Imaging With Solid
Angle Consideration.
Descoteaux, M., et al. 2007. Regularized, fast, and robust analytical
Q-ball imaging.
Tristan-Vega, A., et al. 2010. A new methodology for estimation of fiber
populations in white matter of the brain with Funk-Radon transform.
Tristan-Vega, A., et al. 2009. Estimation of fiber orientation probability
density functions in high angular resolution diffusion imaging.

Note about the Transpose: In the literature the matrix representation of these methods is often written as Y = Bx where B is some design matrix and Y and x are column vectors. In our case the input data, a dwi stored as a nifti file for example, is stored as row vectors (ndarrays) of the form (x, y, z, n), where n is the number of diffusion directions. We could transpose and reshape the data to be (n, x*y*z), so that we could directly plug it into the above equation. However, I have chosen to keep the data as is and implement the relevant equations rewritten in the following form: Y.T = x.T B.T, or in python syntax data = np.dot(sh_coef, B.T) where data is Y.T and sh_coef is x.T.

Cache Cache values based on a key object (such as a sphere or gradient table).
CsaOdfModel(gtab, sh_order[, smooth, …]) Implementation of Constant Solid Angle reconstruction method.
LooseVersion([vstring]) Version numbering for anarchists and software realists.
OdfFit(model, data)

Methods

OdfModel(gtab) An abstract class to be sub-classed by specific odf models
OpdtModel(gtab, sh_order[, smooth, …]) Implementation of Orientation Probability Density Transform reconstruction method.
QballBaseModel(gtab, sh_order[, smooth, …]) To be subclassed by Qball type models.
QballModel(gtab, sh_order[, smooth, …]) Implementation of regularized Qball reconstruction method.
ResidualBootstrapWrapper(signal_object, B, …) Returns a residual bootstrap sample of the signal_object when indexed
SphHarmFit(model, shm_coef, mask) Diffusion data fit to a spherical harmonic model
SphHarmModel(gtab) To be subclassed by all models that return a SphHarmFit when fit.
anisotropic_power(sh_coeffs[, norm_factor, …]) Calculates anisotropic power map with a given SH coefficient matrix
auto_attr(func) Decorator to create OneTimeProperty attributes.
bootstrap_data_array(data, H, R[, permute]) Applies the Residual Bootstraps to the data given H and R
bootstrap_data_voxel(data, H, R[, permute]) Like bootstrap_data_array but faster when for a single voxel
calculate_max_order(n_coeffs) Calculate the maximal harmonic order, given that you know the
cart2sphere(x, y, z) Return angles for Cartesian 3D coordinates x, y, and z
concatenate((a1, a2, …)[, axis, out]) Join a sequence of arrays along an existing axis.
diag(v[, k]) Extract a diagonal or construct a diagonal array.
diff(a[, n, axis]) Calculate the n-th discrete difference along the given axis.
dot(a, b[, out]) Dot product of two arrays.
empty(shape[, dtype, order]) Return a new array of given shape and type, without initializing entries.
eye(N[, M, k, dtype, order]) Return a 2-D array with ones on the diagonal and zeros elsewhere.
forward_sdeconv_mat(r_rh, n) Build forward spherical deconvolution matrix
gen_dirac(m, n, theta, phi) Generate Dirac delta function orientated in (theta, phi) on the sphere
hat(B) Returns the hat matrix for the design matrix B
lazy_index(index) Produces a lazy index
lcr_matrix(H) Returns a matrix for computing leveraged, centered residuals from data
lpn(n, z) Legendre function of the first kind.
normalize_data(data, where_b0[, min_signal, out]) Normalizes the data with respect to the mean b0
order_from_ncoef(ncoef) Given a number n of coefficients, calculate back the sh_order
pinv(a[, rcond]) Compute the (Moore-Penrose) pseudo-inverse of a matrix.
randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (exclusive).
real_sph_harm(m, n, theta, phi) Compute real spherical harmonics.
real_sym_sh_basis(sh_order, theta, phi) Samples a real symmetric spherical harmonic basis at point on the sphere
real_sym_sh_mrtrix(sh_order, theta, phi) Compute real spherical harmonics as in Tournier 2007 [2], where the real harmonic \(Y^m_n\) is defined to be.
sf_to_sh(sf, sphere[, sh_order, basis_type, …]) Spherical function to spherical harmonics (SH).
sh_to_rh(r_sh, m, n) Spherical harmonics (SH) to rotational harmonics (RH)
sh_to_sf(sh, sphere, sh_order[, basis_type]) Spherical harmonics (SH) to spherical function (SF).
sh_to_sf_matrix(sphere, sh_order[, …]) Matrix that transforms Spherical harmonics (SH) to spherical function (SF).
smooth_pinv(B, L) Regularized pseudo-inverse
sph_harm_ind_list(sh_order) Returns the degree (n) and order (m) of all the symmetric spherical harmonics of degree less then or equal to sh_order.
spherical_harmonics(m, n, theta, phi) Compute spherical harmonics
svd(a[, full_matrices, compute_uv]) Singular Value Decomposition.
unique(ar[, return_index, return_inverse, …]) Find the unique elements of an array.

Module: reconst.shore

Cache Cache values based on a key object (such as a sphere or gradient table).
ShoreFit(model, shore_coef)
Attributes:
ShoreModel(gtab[, radial_order, zeta, …]) Simple Harmonic Oscillator based Reconstruction and Estimation (SHORE) [1] of the diffusion signal.
cart2sphere(x, y, z) Return angles for Cartesian 3D coordinates x, y, and z
create_rspace(gridsize, radius_max) Create the real space table, that contains the points in which
factorial(x) Find x!.
genlaguerre(n, alpha[, monic]) Generalized (associated) Laguerre polynomial.
l_shore(radial_order) Returns the angular regularisation matrix for SHORE basis
multi_voxel_fit(single_voxel_fit) Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition
n_shore(radial_order) Returns the angular regularisation matrix for SHORE basis
optional_package(name[, trip_msg]) Return package-like thing and module setup for package name
real_sph_harm(m, n, theta, phi) Compute real spherical harmonics.
shore_indices(radial_order, index) Given the basis order and the index, return the shore indices n, l, m for modified Merlet’s 3D-SHORE ..math:: :nowrap: begin{equation} textbf{E}(qtextbf{u})=sum_{l=0, even}^{N_{max}} sum_{n=l}^{(N_{max}+l)/2} sum_{m=-l}^l c_{nlm} phi_{nlm}(qtextbf{u}) end{equation}
shore_matrix(radial_order, zeta, gtab[, tau]) Compute the SHORE matrix for modified Merlet’s 3D-SHORE [1]
shore_matrix_odf(radial_order, zeta, …) Compute the SHORE ODF matrix [1]
shore_matrix_pdf(radial_order, zeta, rtab) Compute the SHORE propagator matrix [1]
shore_order(n, l, m) Given the indices (n,l,m) of the basis, return the minimum order for those indices and their index for modified Merlet’s 3D-SHORE.
warn Issue a warning, or maybe ignore it or raise an exception.

Module: reconst.utils

dki_design_matrix(gtab) Constructs B design matrix for DKI

bench

dipy.reconst.bench(label='fast', verbose=1, extra_argv=None)

Run benchmarks for module using nose.

Parameters:
label : {‘fast’, ‘full’, ‘’, attribute identifier}, optional

Identifies the benchmarks to run. This can be a string to pass to the nosetests executable with the ‘-A’ option, or one of several special values. Special values are: * ‘fast’ - the default - which corresponds to the nosetests -A

option of ‘not slow’.

  • ‘full’ - fast (as above) and slow benchmarks as in the ‘no -A’ option to nosetests - this is the same as ‘’.
  • None or ‘’ - run all tests.

attribute_identifier - string passed directly to nosetests as ‘-A’.

verbose : int, optional

Verbosity value for benchmark outputs, in the range 1-10. Default is 1.

extra_argv : list, optional

List with any extra arguments to pass to nosetests.

Returns:
success : bool

Returns True if running the benchmarks works, False if an error occurred.

Notes

Benchmarks are like tests, but have names starting with “bench” instead of “test”, and can be found under the “benchmarks” sub-directory of the module.

Each NumPy module exposes bench in its namespace to run all benchmarks for it.

Examples

>>> success = np.lib.bench() 
Running benchmarks for numpy.lib
...
using 562341 items:
unique:
0.11
unique1d:
0.11
ratio: 1.0
nUnique: 56230 == 56230
...
OK
>>> success 
True

test

dipy.reconst.test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, raise_warnings=None, timer=False)

Run tests for module using nose.

Parameters:
label : {‘fast’, ‘full’, ‘’, attribute identifier}, optional

Identifies the tests to run. This can be a string to pass to the nosetests executable with the ‘-A’ option, or one of several special values. Special values are: * ‘fast’ - the default - which corresponds to the nosetests -A

option of ‘not slow’.

  • ‘full’ - fast (as above) and slow tests as in the ‘no -A’ option to nosetests - this is the same as ‘’.
  • None or ‘’ - run all tests.

attribute_identifier - string passed directly to nosetests as ‘-A’.

verbose : int, optional

Verbosity value for test outputs, in the range 1-10. Default is 1.

extra_argv : list, optional

List with any extra arguments to pass to nosetests.

doctests : bool, optional

If True, run doctests in module. Default is False.

coverage : bool, optional

If True, report coverage of NumPy code. Default is False. (This requires the `coverage module:

raise_warnings : None, str or sequence of warnings, optional

This specifies which warnings to configure as ‘raise’ instead of being shown once during the test execution. Valid strings are:

  • “develop” : equals (Warning,)
  • “release” : equals (), don’t raise on any warnings.

The default is to use the class initialization value.

timer : bool or int, optional

Timing of individual tests with nose-timer (which needs to be installed). If True, time tests and report on all of them. If an integer (say N), report timing results for N slowest tests.

Returns:
result : object

Returns the result of running the tests as a nose.result.TextTestResult object.

Notes

Each NumPy module exposes test in its namespace to run all tests for it. For example, to run all tests for numpy.lib:

>>> np.lib.test() 

Examples

>>> result = np.lib.test() 
Running unit tests for numpy.lib
...
Ran 976 tests in 3.933s

OK

>>> result.errors 
[]
>>> result.knownfail 
[]

ReconstFit

class dipy.reconst.base.ReconstFit(model, data)

Bases: object

Abstract class which holds the fit result of ReconstModel

For example that could be holding FA or GFA etc.

__init__(model, data)

Initialize self. See help(type(self)) for accurate signature.

ReconstModel

class dipy.reconst.base.ReconstModel(gtab)

Bases: object

Abstract class for signal reconstruction models

Methods

fit  
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data, mask=None, **kwargs)

bench_bounding_box

dipy.reconst.benchmarks.bench_bounding_box.bench_bounding_box()

bounding_box

dipy.reconst.benchmarks.bench_bounding_box.bounding_box(vol)

Compute the bounding box of nonzero intensity voxels in the volume.

Parameters:
vol : ndarray

Volume to compute bounding box on.

Returns:
npmins : list

Array containg minimum index of each dimension

npmaxs : list

Array containg maximum index of each dimension

measure

dipy.reconst.benchmarks.bench_bounding_box.measure(code_str, times=1, label=None)

Return elapsed time for executing code in the namespace of the caller.

The supplied code string is compiled with the Python builtin compile. The precision of the timing is 10 milli-seconds. If the code will execute fast on this timescale, it can be executed many times to get reasonable timing accuracy.

Parameters:
code_str : str

The code to be timed.

times : int, optional

The number of times the code is executed. Default is 1. The code is only compiled once.

label : str, optional

A label to identify code_str with. This is passed into compile as the second argument (for run-time error messages).

Returns:
elapsed : float

Total elapsed time in seconds for executing code_str times times.

Examples

>>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)',
...                            times=times)
>>> print("Time for a single execution : ", etime / times, "s")
Time for a single execution :  0.005 s

ConstrainedSphericalDeconvModel

class dipy.reconst.benchmarks.bench_csd.ConstrainedSphericalDeconvModel(gtab, response, reg_sphere=None, sh_order=8, lambda_=1, tau=0.1)

Bases: dipy.reconst.shm.SphHarmModel

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fit method for every voxel in data
predict(sh_coeff[, gtab, S0]) Compute a signal prediction given spherical harmonic coefficients for the provided GradientTable class instance.
sampling_matrix(sphere) The matrix needed to sample ODFs from coefficients of the model.
__init__(gtab, response, reg_sphere=None, sh_order=8, lambda_=1, tau=0.1)

Constrained Spherical Deconvolution (CSD) [1].

Spherical deconvolution computes a fiber orientation distribution (FOD), also called fiber ODF (fODF) [2], as opposed to a diffusion ODF as the QballModel or the CsaOdfModel. This results in a sharper angular profile with better angular resolution that is the best object to be used for later deterministic and probabilistic tractography [3].

A sharp fODF is obtained because a single fiber response function is injected as a priori knowledge. The response function is often data-driven and is thus provided as input to the ConstrainedSphericalDeconvModel. It will be used as deconvolution kernel, as described in [1].

Parameters:
gtab : GradientTable
response : tuple or AxSymShResponse object

A tuple with two elements. The first is the eigen-values as an (3,) ndarray and the second is the signal value for the response function without diffusion weighting. This is to be able to generate a single fiber synthetic signal. The response function will be used as deconvolution kernel ([1])

reg_sphere : Sphere (optional)

sphere used to build the regularization B matrix. Default: ‘symmetric362’.

sh_order : int (optional)

maximal spherical harmonics order. Default: 8

lambda_ : float (optional)

weight given to the constrained-positivity regularization part of the deconvolution equation (see [1]). Default: 1

tau : float (optional)

threshold controlling the amplitude below which the corresponding fODF is assumed to be zero. Ideally, tau should be set to zero. However, to improve the stability of the algorithm, tau is set to tau*100 % of the mean fODF amplitude (here, 10% by default) (see [1]). Default: 0.1

References

[1](1, 2, 3, 4, 5, 6) Tournier, J.D., et al. NeuroImage 2007. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution
[2](1, 2) Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions
[3](1, 2) C^ot’e, M-A., et al. Medical Image Analysis 2013. Tractometer: Towards validation of tractography pipelines
[4]Tournier, J.D, et al. Imaging Systems and Technology 2012. MRtrix: Diffusion Tractography in Crossing Fiber Regions
fit(data, mask=None)

Fit method for every voxel in data

predict(sh_coeff, gtab=None, S0=1.0)

Compute a signal prediction given spherical harmonic coefficients for the provided GradientTable class instance.

Parameters:
sh_coeff : ndarray

The spherical harmonic representation of the FOD from which to make the signal prediction.

gtab : GradientTable

The gradients for which the signal will be predicted. Use the model’s gradient table by default.

S0 : ndarray or float

The non diffusion-weighted signal value.

Returns:
pred_sig : ndarray

The predicted signal.

GradientTable

class dipy.reconst.benchmarks.bench_csd.GradientTable(gradients, big_delta=None, small_delta=None, b0_threshold=50)

Bases: object

Diffusion gradient information

Parameters:
gradients : array_like (N, 3)

Diffusion gradients. The direction of each of these vectors corresponds to the b-vector, and the length corresponds to the b-value.

b0_threshold : float

Gradients with b-value less than or equal to b0_threshold are considered as b0s i.e. without diffusion weighting.

See also

gradient_table

Notes

The GradientTable object is immutable. Do NOT assign attributes. If you have your gradient table in a bval & bvec format, we recommend using the factory function gradient_table

Attributes:
gradients : (N,3) ndarray

diffusion gradients

bvals : (N,) ndarray

The b-value, or magnitude, of each gradient direction.

qvals: (N,) ndarray

The q-value for each gradient direction. Needs big and small delta.

bvecs : (N,3) ndarray

The direction, represented as a unit vector, of each gradient.

b0s_mask : (N,) ndarray

Boolean array indicating which gradients have no diffusion weighting, ie b-value is close to 0.

b0_threshold : float

Gradients with b-value less than or equal to b0_threshold are considered to not have diffusion weighting.

Methods

b0s_mask  
bvals  
bvecs  
gradient_strength  
qvals  
tau  
__init__(gradients, big_delta=None, small_delta=None, b0_threshold=50)

Constructor for GradientTable class

b0s_mask()
bvals()
bvecs()
gradient_strength()
info
qvals()
tau()

bench_csdeconv

dipy.reconst.benchmarks.bench_csd.bench_csdeconv(center=(50, 40, 40), width=12)

num_grad

dipy.reconst.benchmarks.bench_csd.num_grad(gtab)

read_stanford_labels

dipy.reconst.benchmarks.bench_csd.read_stanford_labels()

Read stanford hardi data and label map

bench_local_maxima

dipy.reconst.benchmarks.bench_peaks.bench_local_maxima()

get_sphere

dipy.reconst.benchmarks.bench_peaks.get_sphere(name='symmetric362')

provide triangulated spheres

Parameters:
name : str

which sphere - one of: * ‘symmetric362’ * ‘symmetric642’ * ‘symmetric724’ * ‘repulsion724’ * ‘repulsion100’ * ‘repulsion200’

Returns:
sphere : a dipy.core.sphere.Sphere class instance

Examples

>>> import numpy as np
>>> from dipy.data import get_sphere
>>> sphere = get_sphere('symmetric362')
>>> verts, faces = sphere.vertices, sphere.faces
>>> verts.shape == (362, 3)
True
>>> faces.shape == (720, 3)
True
>>> verts, faces = get_sphere('not a sphere name') 
Traceback (most recent call last):
    ...
DataError: No sphere called "not a sphere name"

local_maxima

dipy.reconst.benchmarks.bench_peaks.local_maxima()

Local maxima of a function evaluated on a discrete set of points.

If a function is evaluated on some set of points where each pair of neighboring points is an edge in edges, find the local maxima.

Parameters:
odf : array, 1d, dtype=double

The function evaluated on a set of discrete points.

edges : array (N, 2)

The set of neighbor relations between the points. Every edge, ie edges[i, :], is a pair of neighboring points.

Returns:
peak_values : ndarray

Value of odf at a maximum point. Peak values is sorted in descending order.

peak_indices : ndarray

Indices of maximum points. Sorted in the same order as peak_values so odf[peak_indices[i]] == peak_values[i].

See also

dipy.core.sphere

measure

dipy.reconst.benchmarks.bench_peaks.measure(code_str, times=1, label=None)

Return elapsed time for executing code in the namespace of the caller.

The supplied code string is compiled with the Python builtin compile. The precision of the timing is 10 milli-seconds. If the code will execute fast on this timescale, it can be executed many times to get reasonable timing accuracy.

Parameters:
code_str : str

The code to be timed.

times : int, optional

The number of times the code is executed. Default is 1. The code is only compiled once.

label : str, optional

A label to identify code_str with. This is passed into compile as the second argument (for run-time error messages).

Returns:
elapsed : float

Total elapsed time in seconds for executing code_str times times.

Examples

>>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)',
...                            times=times)
>>> print("Time for a single execution : ", etime / times, "s")
Time for a single execution :  0.005 s

unique_edges

dipy.reconst.benchmarks.bench_peaks.unique_edges(faces, return_mapping=False)

Extract all unique edges from given triangular faces.

Parameters:
faces : (N, 3) ndarray

Vertex indices forming triangular faces.

return_mapping : bool

If true, a mapping to the edges of each face is returned.

Returns:
edges : (N, 2) ndarray

Unique edges.

mapping : (N, 3)

For each face, [x, y, z], a mapping to it’s edges [a, b, c].

   y
   /               /               a/    
/                  /                   /__________          x      c     z

bench_quick_squash

dipy.reconst.benchmarks.bench_squash.bench_quick_squash()

measure

dipy.reconst.benchmarks.bench_squash.measure(code_str, times=1, label=None)

Return elapsed time for executing code in the namespace of the caller.

The supplied code string is compiled with the Python builtin compile. The precision of the timing is 10 milli-seconds. If the code will execute fast on this timescale, it can be executed many times to get reasonable timing accuracy.

Parameters:
code_str : str

The code to be timed.

times : int, optional

The number of times the code is executed. Default is 1. The code is only compiled once.

label : str, optional

A label to identify code_str with. This is passed into compile as the second argument (for run-time error messages).

Returns:
elapsed : float

Total elapsed time in seconds for executing code_str times times.

Examples

>>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)',
...                            times=times)
>>> print("Time for a single execution : ", etime / times, "s")
Time for a single execution :  0.005 s

ndindex

dipy.reconst.benchmarks.bench_squash.ndindex(shape)

An N-dimensional iterator object to index arrays.

Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each iteration a tuple of indices is returned; the last dimension is iterated over first.

Parameters:
shape : tuple of ints

The dimensions of the array.

Examples

>>> from dipy.core.ndindex import ndindex
>>> shape = (3, 2, 1)
>>> for index in ndindex(shape):
...     print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

old_squash

dipy.reconst.benchmarks.bench_squash.old_squash(arr, mask=None, fill=0)

Try and make a standard array from an object array

This function takes an object array and attempts to convert it to a more useful dtype. If array can be converted to a better dtype, Nones are replaced by fill. To make the behaviour of this function more clear, here are the most common cases:

  1. arr is an array of scalars of type T. Returns an array like arr.astype(T)
  2. arr is an array of arrays. All items in arr have the same shape S. Returns an array with shape arr.shape + S.
  3. arr is an array of arrays of different shapes. Returns arr.
  4. Items in arr are not ndarrys or scalars. Returns arr.
Parameters:
arr : array, dtype=object

The array to be converted.

mask : array, dtype=bool, optional

Where arr has Nones.

fill : number, optional

Nones are replaced by fill.

Returns:
result : array

Examples

>>> arr = np.empty(3, dtype=object)
>>> arr.fill(2)
>>> old_squash(arr)
array([2, 2, 2])
>>> arr[0] = None
>>> old_squash(arr)
array([0, 2, 2])
>>> arr.fill(np.ones(2))
>>> r = old_squash(arr)
>>> r.shape == (3, 2)
True
>>> r.dtype
dtype('float64')

quick_squash

dipy.reconst.benchmarks.bench_squash.quick_squash()

Try and make a standard array from an object array

This function takes an object array and attempts to convert it to a more useful dtype. If array can be converted to a better dtype, Nones are replaced by fill. To make the behaviour of this function more clear, here are the most common cases:

  1. obj_arr is an array of scalars of type T. Returns an array like obj_arr.astype(T)
  2. obj_arr is an array of arrays. All items in obj_arr have the same shape S. Returns an array with shape obj_arr.shape + S
  3. obj_arr is an array of arrays of different shapes. Returns obj_arr.
  4. Items in obj_arr are not ndarrays or scalars. Returns obj_arr.
Parameters:
obj_arr : array, dtype=object

The array to be converted.

mask : array, dtype=bool, optional

mask is nonzero where obj_arr has Nones.

fill : number, optional

Nones are replaced by fill.

Returns:
result : array

Examples

>>> arr = np.empty(3, dtype=object)
>>> arr.fill(2)
>>> quick_squash(arr)
array([2, 2, 2])
>>> arr[0] = None
>>> quick_squash(arr)
array([0, 2, 2])
>>> arr.fill(np.ones(2))
>>> r = quick_squash(arr)
>>> r.shape
(3, 2)
>>> r.dtype
dtype('float64')

reduce

dipy.reconst.benchmarks.bench_squash.reduce(function, sequence[, initial]) → value

Apply a function of two arguments cumulatively to the items of a sequence, from left to right, so as to reduce the sequence to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). If initial is present, it is placed before the items of the sequence in the calculation, and serves as a default when the sequence is empty.

bench_vec_val_vect

dipy.reconst.benchmarks.bench_vec_val_sum.bench_vec_val_vect()

measure

dipy.reconst.benchmarks.bench_vec_val_sum.measure(code_str, times=1, label=None)

Return elapsed time for executing code in the namespace of the caller.

The supplied code string is compiled with the Python builtin compile. The precision of the timing is 10 milli-seconds. If the code will execute fast on this timescale, it can be executed many times to get reasonable timing accuracy.

Parameters:
code_str : str

The code to be timed.

times : int, optional

The number of times the code is executed. Default is 1. The code is only compiled once.

label : str, optional

A label to identify code_str with. This is passed into compile as the second argument (for run-time error messages).

Returns:
elapsed : float

Total elapsed time in seconds for executing code_str times times.

Examples

>>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)',
...                            times=times)
>>> print("Time for a single execution : ", etime / times, "s")
Time for a single execution :  0.005 s

randn

dipy.reconst.benchmarks.bench_vec_val_sum.randn(d0, d1, ..., dn)

Return a sample (or samples) from the “standard normal” distribution.

If positive, int_like or int-convertible arguments are provided, randn generates an array of shape (d0, d1, ..., dn), filled with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1 (if any of the \(d_i\) are floats, they are first converted to integers by truncation). A single float randomly sampled from the distribution is returned if no argument is provided.

This is a convenience function. If you want an interface that takes a tuple as the first argument, use numpy.random.standard_normal instead.

Parameters:
d0, d1, …, dn : int, optional

The dimensions of the returned array, should be all positive. If no argument is given a single Python float is returned.

Returns:
Z : ndarray or float

A (d0, d1, ..., dn)-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied.

See also

standard_normal
Similar, but takes a tuple as its argument.

Notes

For random samples from \(N(\mu, \sigma^2)\), use:

sigma * np.random.randn(...) + mu

Examples

>>> np.random.randn()
2.1923875335537315 #random

Two-by-four array of samples from N(3, 6.25):

>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],  #random
       [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]]) #random

vec_val_vect

dipy.reconst.benchmarks.bench_vec_val_sum.vec_val_vect()

Vectorize vecs.diag(vals).`vecs`.T for last 2 dimensions of vecs

Parameters:
vecs : shape (…, M, N) array

containing tensor in last two dimensions; M, N usually equal to (3, 3)

vals : shape (…, N) array

diagonal values carried in last dimension, ... shape above must match that for vecs

Returns:
res : shape (…, M, M) array

For all the dimensions ellided by ..., loops to get (M, N) vec matrix, and (N,) vals vector, and calculates vec.dot(np.diag(val).dot(vec.T).

Raises:
ValueError : non-matching ... dimensions of vecs, vals
ValueError : non-matching N dimensions of vecs, vals

Examples

Make a 3D array where the first dimension is only 1

>>> vecs = np.arange(9).reshape((1, 3, 3))
>>> vals = np.arange(3).reshape((1, 3))
>>> vec_val_vect(vecs, vals)
array([[[   9.,   24.,   39.],
        [  24.,   66.,  108.],
        [  39.,  108.,  177.]]])

That’s the same as the 2D case (apart from the float casting):

>>> vecs = np.arange(9).reshape((3, 3))
>>> vals = np.arange(3)
>>> np.dot(vecs, np.dot(np.diag(vals), vecs.T))
array([[  9,  24,  39],
       [ 24,  66, 108],
       [ 39, 108, 177]])

with_einsum

dipy.reconst.benchmarks.bench_vec_val_sum.with_einsum(f)

Cache

class dipy.reconst.cache.Cache

Bases: object

Cache values based on a key object (such as a sphere or gradient table).

Notes

This class is meant to be used as a mix-in:

class MyModel(Model, Cache):
    pass

class MyModelFit(Fit):
    pass

Inside a method on the fit, typical usage would be:

def odf(sphere):
    M = self.model.cache_get('odf_basis_matrix', key=sphere)

    if M is None:
        M = self._compute_basis_matrix(sphere)
        self.model.cache_set('odf_basis_matrix', key=sphere, value=M)

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

cache_clear()

Clear the cache.

cache_get(tag, key, default=None)

Retrieve a value from the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

default : object

Value to be returned if no cached entry is found.

Returns:
v : object

Value from the cache associated with (tag, key). Returns default if no cached entry is found.

cache_set(tag, key, value)

Store a value in the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

value : object

Value stored in the cache for each unique combination of (tag, key).

Examples

>>> def compute_expensive_matrix(parameters):
...     # Imagine the following computation is very expensive
...     return (p**2 for p in parameters)
>>> c = Cache()
>>> parameters = (1, 2, 3)
>>> X1 = compute_expensive_matrix(parameters)
>>> c.cache_set('expensive_matrix', parameters, X1)
>>> X2 = c.cache_get('expensive_matrix', parameters)
>>> X1 is X2
True

auto_attr

dipy.reconst.cache.auto_attr(func)

Decorator to create OneTimeProperty attributes.

Parameters:
func : method

The method that will be called the first time to compute a value. Afterwards, the method’s name will be a standard attribute holding the value of this computation.

Examples

>>> class MagicProp(object):
...     @auto_attr
...     def a(self):
...         return 99
...
>>> x = MagicProp()
>>> 'a' in x.__dict__
False
>>> x.a
99
>>> 'a' in x.__dict__
True

range

class dipy.reconst.cross_validation.range(stop) → range object

Bases: object

range(start, stop[, step]) -> range object

Return an object that produces a sequence of integers from start (inclusive) to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, …, j-1. start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3. These are exactly the valid indices for a list of 4 elements. When step is given, it specifies the increment (or decrement).

Attributes:
start
step
stop

Methods

count(value)
index(value, [start, [stop]]) Raise ValueError if the value is not present.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

count(value) → integer -- return number of occurrences of value
index(value[, start[, stop]]) → integer -- return index of value.

Raise ValueError if the value is not present.

start
step
stop

coeff_of_determination

dipy.reconst.cross_validation.coeff_of_determination(data, model, axis=-1)
Calculate the coefficient of determination for a model prediction, relative to data.
Parameters:
data : ndarray

The data

model : ndarray

The predictions of a model for this data. Same shape as the data.

axis: int, optional

The axis along which different samples are laid out (default: -1).

Returns:
COD : ndarray

The coefficient of determination. This has shape data.shape[:-1]

rac{SSE}{SSD})

where SSE is the sum of the squared error between the model and the data (sum of the squared residuals) and SSD is the sum of the squares of the deviations of the data from the mean of the data (variance * N).

kfold_xval

dipy.reconst.cross_validation.kfold_xval(model, data, folds, *model_args, **model_kwargs)

Perform k-fold cross-validation to generate out-of-sample predictions for each measurement.

Parameters:
model : Model class instance

The type of the model to use for prediction. The corresponding Fit object must have a predict function implementd One of the following: reconst.dti.TensorModel or reconst.csdeconv.ConstrainedSphericalDeconvModel.

data : ndarray

Diffusion MRI data acquired with the GradientTable of the model. Shape will typically be (x, y, z, b) where xyz are spatial dimensions and b is the number of bvals/bvecs in the GradientTable.

folds : int

The number of divisions to apply to the data

model_args : list

Additional arguments to the model initialization

model_kwargs : dict

Additional key-word arguments to the model initialization. If contains the kwarg mask, this will be used as a key-word argument to the fit method of the model object, rather than being used in the initialization of the model object

Notes

This function assumes that a prediction API is implemented in the Model class for which prediction is conducted. That is, the Fit object that gets generated upon fitting the model needs to have a predict method, which receives a GradientTable class instance as input and produces a predicted signal as output.

It also assumes that the model object has bval and bvec attributes holding b-values and corresponding unit vectors.

References

[1]Rokem, A., Chan, K.L. Yeatman, J.D., Pestilli, F., Mezer, A., Wandell, B.A., 2014. Evaluating the accuracy of diffusion models at multiple b-values with cross-validation. ISMRM 2014.

AxSymShResponse

class dipy.reconst.csdeconv.AxSymShResponse(S0, dwi_response, bvalue=None)

Bases: object

A simple wrapper for response functions represented using only axially symmetric, even spherical harmonic functions (ie, m == 0 and n even).

Methods

basis(sphere) A basis that maps the response coefficients onto a sphere.
on_sphere(sphere) Evaluates the response function on sphere.
__init__(S0, dwi_response, bvalue=None)

Initialize self. See help(type(self)) for accurate signature.

basis(sphere)

A basis that maps the response coefficients onto a sphere.

on_sphere(sphere)

Evaluates the response function on sphere.

ConstrainedSDTModel

class dipy.reconst.csdeconv.ConstrainedSDTModel(gtab, ratio, reg_sphere=None, sh_order=8, lambda_=1.0, tau=0.1)

Bases: dipy.reconst.shm.SphHarmModel

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fit method for every voxel in data
sampling_matrix(sphere) The matrix needed to sample ODFs from coefficients of the model.
__init__(gtab, ratio, reg_sphere=None, sh_order=8, lambda_=1.0, tau=0.1)

Spherical Deconvolution Transform (SDT) [1].

The SDT computes a fiber orientation distribution (FOD) as opposed to a diffusion ODF as the QballModel or the CsaOdfModel. This results in a sharper angular profile with better angular resolution. The Constrained SDTModel is similar to the Constrained CSDModel but mathematically it deconvolves the q-ball ODF as oppposed to the HARDI signal (see [1] for a comparison and a through discussion).

A sharp fODF is obtained because a single fiber response function is injected as a priori knowledge. In the SDTModel, this response is a single fiber q-ball ODF as opposed to a single fiber signal function for the CSDModel. The response function will be used as deconvolution kernel.

Parameters:
gtab : GradientTable
ratio : float

ratio of the smallest vs the largest eigenvalue of the single prolate tensor response function

reg_sphere : Sphere

sphere used to build the regularization B matrix

sh_order : int

maximal spherical harmonics order

lambda_ : float

weight given to the constrained-positivity regularization part of the deconvolution equation

tau : float

threshold (tau *mean(fODF)) controlling the amplitude below which the corresponding fODF is assumed to be zero.

References

[1](1, 2, 3) Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions.
fit(data, mask=None)

Fit method for every voxel in data

ConstrainedSphericalDeconvModel

class dipy.reconst.csdeconv.ConstrainedSphericalDeconvModel(gtab, response, reg_sphere=None, sh_order=8, lambda_=1, tau=0.1)

Bases: dipy.reconst.shm.SphHarmModel

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fit method for every voxel in data
predict(sh_coeff[, gtab, S0]) Compute a signal prediction given spherical harmonic coefficients for the provided GradientTable class instance.
sampling_matrix(sphere) The matrix needed to sample ODFs from coefficients of the model.
__init__(gtab, response, reg_sphere=None, sh_order=8, lambda_=1, tau=0.1)

Constrained Spherical Deconvolution (CSD) [1].

Spherical deconvolution computes a fiber orientation distribution (FOD), also called fiber ODF (fODF) [2], as opposed to a diffusion ODF as the QballModel or the CsaOdfModel. This results in a sharper angular profile with better angular resolution that is the best object to be used for later deterministic and probabilistic tractography [3].

A sharp fODF is obtained because a single fiber response function is injected as a priori knowledge. The response function is often data-driven and is thus provided as input to the ConstrainedSphericalDeconvModel. It will be used as deconvolution kernel, as described in [1].

Parameters:
gtab : GradientTable
response : tuple or AxSymShResponse object

A tuple with two elements. The first is the eigen-values as an (3,) ndarray and the second is the signal value for the response function without diffusion weighting. This is to be able to generate a single fiber synthetic signal. The response function will be used as deconvolution kernel ([1])

reg_sphere : Sphere (optional)

sphere used to build the regularization B matrix. Default: ‘symmetric362’.

sh_order : int (optional)

maximal spherical harmonics order. Default: 8

lambda_ : float (optional)

weight given to the constrained-positivity regularization part of the deconvolution equation (see [1]). Default: 1

tau : float (optional)

threshold controlling the amplitude below which the corresponding fODF is assumed to be zero. Ideally, tau should be set to zero. However, to improve the stability of the algorithm, tau is set to tau*100 % of the mean fODF amplitude (here, 10% by default) (see [1]). Default: 0.1

References

[1](1, 2, 3, 4, 5, 6) Tournier, J.D., et al. NeuroImage 2007. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution
[2](1, 2) Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions
[3](1, 2) C^ot’e, M-A., et al. Medical Image Analysis 2013. Tractometer: Towards validation of tractography pipelines
[4]Tournier, J.D, et al. Imaging Systems and Technology 2012. MRtrix: Diffusion Tractography in Crossing Fiber Regions
fit(data, mask=None)

Fit method for every voxel in data

predict(sh_coeff, gtab=None, S0=1.0)

Compute a signal prediction given spherical harmonic coefficients for the provided GradientTable class instance.

Parameters:
sh_coeff : ndarray

The spherical harmonic representation of the FOD from which to make the signal prediction.

gtab : GradientTable

The gradients for which the signal will be predicted. Use the model’s gradient table by default.

S0 : ndarray or float

The non diffusion-weighted signal value.

Returns:
pred_sig : ndarray

The predicted signal.

SphHarmFit

class dipy.reconst.csdeconv.SphHarmFit(model, shm_coef, mask)

Bases: dipy.reconst.odf.OdfFit

Diffusion data fit to a spherical harmonic model

Attributes:
shape
shm_coeff

The spherical harmonic coefficients of the odf

Methods

odf(sphere) Samples the odf function on the points of a sphere
predict([gtab, S0]) Predict the diffusion signal from the model coefficients.
gfa  
__init__(model, shm_coef, mask)

Initialize self. See help(type(self)) for accurate signature.

gfa()
odf(sphere)

Samples the odf function on the points of a sphere

Parameters:
sphere : Sphere

The points on which to sample the odf.

Returns:
values : ndarray

The value of the odf on each point of sphere.

predict(gtab=None, S0=1.0)

Predict the diffusion signal from the model coefficients.

Parameters:
gtab : a GradientTable class instance

The directions and bvalues on which prediction is desired

S0 : float array

The mean non-diffusion-weighted signal in each voxel. Default: 1.0 in all voxels

shape
shm_coeff

The spherical harmonic coefficients of the odf

Make this a property for now, if there is a usecase for modifying the coefficients we can add a setter or expose the coefficients more directly

SphHarmModel

class dipy.reconst.csdeconv.SphHarmModel(gtab)

Bases: dipy.reconst.odf.OdfModel, dipy.reconst.cache.Cache

To be subclassed by all models that return a SphHarmFit when fit.

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data) To be implemented by specific odf models
sampling_matrix(sphere) The matrix needed to sample ODFs from coefficients of the model.
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
sampling_matrix(sphere)

The matrix needed to sample ODFs from coefficients of the model.

Parameters:
sphere : Sphere

Points used to sample ODF.

Returns:
sampling_matrix : array

The size of the matrix will be (N, M) where N is the number of vertices on sphere and M is the number of coefficients needed by the model.

TensorModel

class dipy.reconst.csdeconv.TensorModel(gtab, fit_method='WLS', return_S0_hat=False, *args, **kwargs)

Bases: dipy.reconst.base.ReconstModel

Diffusion Tensor

Methods

fit(data[, mask]) Fit method of the DTI model class
predict(dti_params[, S0]) Predict a signal for this TensorModel class instance given parameters.
__init__(gtab, fit_method='WLS', return_S0_hat=False, *args, **kwargs)

A Diffusion Tensor Model [1], [2].

Parameters:
gtab : GradientTable class instance
fit_method : str or callable

str can be one of the following:

‘WLS’ for weighted least squares

dti.wls_fit_tensor()

‘LS’ or ‘OLS’ for ordinary least squares

dti.ols_fit_tensor()

‘NLLS’ for non-linear least-squares

dti.nlls_fit_tensor()

‘RT’ or ‘restore’ or ‘RESTORE’ for RESTORE robust tensor

fitting [3] dti.restore_fit_tensor()

callable has to have the signature:

fit_method(design_matrix, data, *args, **kwargs)

return_S0_hat : bool

Boolean to return (True) or not (False) the S0 values for the fit.

args, kwargs : arguments and key-word arguments passed to the

fit_method. See dti.wls_fit_tensor, dti.ols_fit_tensor for details

min_signal : float

The minimum signal value. Needs to be a strictly positive number. Default: minimal signal in the data provided to fit.

Notes

In order to increase speed of processing, tensor fitting is done simultaneously over many voxels. Many fit_methods use the ‘step’ parameter to set the number of voxels that will be fit at once in each iteration. This is the chunk size as a number of voxels. A larger step value should speed things up, but it will also take up more memory. It is advisable to keep an eye on memory consumption as this value is increased.

Example : In iter_fit_tensor() we have a default step value of 1e4

References

[1](1, 2) Basser, P.J., Mattiello, J., LeBihan, D., 1994. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103, 247-254.
[2](1, 2) Basser, P., Pierpaoli, C., 1996. Microstructural and physiological features of tissues elucidated by quantitative diffusion-tensor MRI. Journal of Magnetic Resonance 111, 209-219.
[3](1, 2) Lin-Ching C., Jones D.K., Pierpaoli, C. 2005. RESTORE: Robust estimation of tensors by outlier rejection. MRM 53: 1088-1095
fit(data, mask=None)

Fit method of the DTI model class

Parameters:
data : array

The measured signal from one voxel.

mask : array

A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[:-1]

predict(dti_params, S0=1.0)

Predict a signal for this TensorModel class instance given parameters.

Parameters:
dti_params : ndarray

The last dimension should have 12 tensor parameters: 3 eigenvalues, followed by the 3 eigenvectors

S0 : float or ndarray

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

range

class dipy.reconst.csdeconv.range(stop) → range object

Bases: object

range(start, stop[, step]) -> range object

Return an object that produces a sequence of integers from start (inclusive) to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, …, j-1. start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3. These are exactly the valid indices for a list of 4 elements. When step is given, it specifies the increment (or decrement).

Attributes:
start
step
stop

Methods

count(value)
index(value, [start, [stop]]) Raise ValueError if the value is not present.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

count(value) → integer -- return number of occurrences of value
index(value[, start[, stop]]) → integer -- return index of value.

Raise ValueError if the value is not present.

start
step
stop

auto_response

dipy.reconst.csdeconv.auto_response(gtab, data, roi_center=None, roi_radius=10, fa_thr=0.7, fa_callable=<function fa_superior>, return_number_of_voxels=False)

Automatic estimation of response function using FA.

Parameters:
gtab : GradientTable
data : ndarray

diffusion data

roi_center : tuple, (3,)

Center of ROI in data. If center is None, it is assumed that it is the center of the volume with shape data.shape[:3].

roi_radius : int

radius of cubic ROI

fa_thr : float

FA threshold

fa_callable : callable

A callable that defines an operation that compares FA with the fa_thr. The operator should have two positional arguments (e.g., fa_operator(FA, fa_thr)) and it should return a bool array.

return_number_of_voxels : bool

If True, returns the number of voxels used for estimating the response function.

Returns:
response : tuple, (2,)

(evals, S0)

ratio : float

The ratio between smallest versus largest eigenvalue of the response.

number of voxels : int (optional)

The number of voxels used for estimating the response function.

Notes

In CSD there is an important pre-processing step: the estimation of the fiber response function. In order to do this we look for voxels with very anisotropic configurations. For example we can use an ROI (20x20x20) at the center of the volume and store the signal values for the voxels with FA values higher than 0.7. Of course, if we haven’t precalculated FA we need to fit a Tensor model to the datasets. Which is what we do in this function.

For the response we also need to find the average S0 in the ROI. This is possible using gtab.b0s_mask() we can find all the S0 volumes (which correspond to b-values equal 0) in the dataset.

The response consists always of a prolate tensor created by averaging the highest and second highest eigenvalues in the ROI with FA higher than threshold. We also include the average S0s.

We also return the ratio which is used for the SDT models. If requested, the number of voxels used for estimating the response function is also returned, which can be used to judge the fidelity of the response function. As a rule of thumb, at least 300 voxels should be used to estimate a good response function (see [1]).

References

[1](1, 2) Tournier, J.D., et al. NeuroImage 2004. Direct estimation of the

fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution

cart2sphere

dipy.reconst.csdeconv.cart2sphere(x, y, z)

Return angles for Cartesian 3D coordinates x, y, and z

See doc for sphere2cart for angle conventions and derivation of the formulae.

\(0\le\theta\mathrm{(theta)}\le\pi\) and \(-\pi\le\phi\mathrm{(phi)}\le\pi\)

Parameters:
x : array_like

x coordinate in Cartesian space

y : array_like

y coordinate in Cartesian space

z : array_like

z coordinate

Returns:
r : array

radius

theta : array

inclination (polar) angle

phi : array

azimuth angle

csdeconv

dipy.reconst.csdeconv.csdeconv(dwsignal, X, B_reg, tau=0.1, convergence=50, P=None)

Constrained-regularized spherical deconvolution (CSD) [1]

Deconvolves the axially symmetric single fiber response function r_rh in rotational harmonics coefficients from the diffusion weighted signal in dwsignal.

Parameters:
dwsignal : array

Diffusion weighted signals to be deconvolved.

X : array

Prediction matrix which estimates diffusion weighted signals from FOD coefficients.

B_reg : array (N, B)

SH basis matrix which maps FOD coefficients to FOD values on the surface of the sphere. B_reg should be scaled to account for lambda.

tau : float

Threshold controlling the amplitude below which the corresponding fODF is assumed to be zero. Ideally, tau should be set to zero. However, to improve the stability of the algorithm, tau is set to tau*100 % of the max fODF amplitude (here, 10% by default). This is similar to peak detection where peaks below 0.1 amplitude are usually considered noise peaks. Because SDT is based on a q-ball ODF deconvolution, and not signal deconvolution, using the max instead of mean (as in CSD), is more stable.

convergence : int

Maximum number of iterations to allow the deconvolution to converge.

P : ndarray

This is an optimization to avoid computing dot(X.T, X) many times. If the same X is used many times, P can be precomputed and passed to this function.

Returns:
fodf_sh : ndarray ((sh_order + 1)*(sh_order + 2)/2,)

Spherical harmonics coefficients of the constrained-regularized fiber ODF.

num_it : int

Number of iterations in the constrained-regularization used for convergence.

Notes

This section describes how the fitting of the SH coefficients is done. Problem is to minimise per iteration:

\(F(f_n) = ||Xf_n - S||^2 + \lambda^2 ||H_{n-1} f_n||^2\)

Where \(X\) maps current FOD SH coefficients \(f_n\) to DW signals \(s\) and \(H_{n-1}\) maps FOD SH coefficients \(f_n\) to amplitudes along set of negative directions identified in previous iteration, i.e. the matrix formed by the rows of \(B_{reg}\) for which \(Hf_{n-1}<0\) where \(B_{reg}\) maps \(f_n\) to FOD amplitude on a sphere.

Solve by differentiating and setting to zero:

\(\Rightarrow \frac{\delta F}{\delta f_n} = 2X^T(Xf_n - S) + 2 \lambda^2 H_{n-1}^TH_{n-1}f_n=0\)

Or:

\((X^TX + \lambda^2 H_{n-1}^TH_{n-1})f_n = X^Ts\)

Define \(Q = X^TX + \lambda^2 H_{n-1}^TH_{n-1}\) , which by construction is a square positive definite symmetric matrix of size \(n_{SH} by n_{SH}\). If needed, positive definiteness can be enforced with a small minimum norm regulariser (helps a lot with poorly conditioned direction sets and/or superresolution):

\(Q = X^TX + (\lambda H_{n-1}^T) (\lambda H_{n-1}) + \mu I\)

Solve \(Qf_n = X^Ts\) using Cholesky decomposition:

\(Q = LL^T\)

where \(L\) is lower triangular. Then problem can be solved by back-substitution:

\(L_y = X^Ts\)

\(L^Tf_n = y\)

To speeds things up further, form \(P = X^TX + \mu I\), and update to form \(Q\) by rankn update with \(H_{n-1}\). The dipy implementation looks like:

form initially \(P = X^T X + \mu I\) and \(\lambda B_{reg}\)

for each voxel: form \(z = X^Ts\)

estimate \(f_0\) by solving \(Pf_0=z\). We use a simplified \(l_{max}=4\) solution here, but it might not make a big difference.

Then iterate until no change in rows of \(H\) used in \(H_n\)

form \(H_{n}\) given \(f_{n-1}\)

form \(Q = P + (\lambda H_{n-1}^T) (\lambda H_{n-1}\)) (this can be done by rankn update, but we currently do not use rankn update).

solve \(Qf_n = z\) using Cholesky decomposition

We’d like to thanks Donald Tournier for his help with describing and implementing this algorithm.

References

[1](1, 2, 3) Tournier, J.D., et al. NeuroImage 2007. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution.

estimate_response

dipy.reconst.csdeconv.estimate_response(gtab, evals, S0)

Estimate single fiber response function

Parameters:
gtab : GradientTable
evals : ndarray
S0 : float

non diffusion weighted

Returns:
S : estimated signal

fa_inferior

dipy.reconst.csdeconv.fa_inferior(FA, fa_thr)

Check that the FA is lower than the FA threshold

Parameters:
FA : array

Fractional Anisotropy

fa_thr : int

FA threshold

Returns:
True when the FA value is lower than the FA threshold, otherwise False.

fa_superior

dipy.reconst.csdeconv.fa_superior(FA, fa_thr)

Check that the FA is greater than the FA threshold

Parameters:
FA : array

Fractional Anisotropy

fa_thr : int

FA threshold

Returns:
True when the FA value is greater than the FA threshold, otherwise False.

fa_trace_to_lambdas

dipy.reconst.csdeconv.fa_trace_to_lambdas(fa=0.08, trace=0.0021)

forward_sdeconv_mat

dipy.reconst.csdeconv.forward_sdeconv_mat(r_rh, n)

Build forward spherical deconvolution matrix

Parameters:
r_rh : ndarray

Rotational harmonics coefficients for the single fiber response function. Each element rh[i] is associated with spherical harmonics of degree 2*i.

n : ndarray

The degree of spherical harmonic function associated with each row of the deconvolution matrix. Only even degrees are allowed

Returns:
R : ndarray (N, N)

Deconvolution matrix with shape (N, N)

forward_sdt_deconv_mat

dipy.reconst.csdeconv.forward_sdt_deconv_mat(ratio, n, r2_term=False)

Build forward sharpening deconvolution transform (SDT) matrix

Parameters:
ratio : float

ratio = :math:`

rac{lambda_2}{lambda_1}` of the single fiber response

function

n : ndarray (N,)

The degree of spherical harmonic function associated with each row of the deconvolution matrix. Only even degrees are allowed.

r2_term : bool

True if ODF comes from an ODF computed from a model using the \(r^2\) term in the integral. For example, DSI, GQI, SHORE, CSA, Tensor, Multi-tensor ODFs. This results in using the proper analytical response function solution solving from the single-fiber ODF with the r^2 term. This derivation is not published anywhere but is very similar to [Rf897e7c36096-1].

Returns:
R : ndarray (N, N)

SDT deconvolution matrix

P : ndarray (N, N)

Funk-Radon Transform (FRT) matrix

fractional_anisotropy

dipy.reconst.csdeconv.fractional_anisotropy(evals, axis=-1)

Fractional anisotropy (FA) of a diffusion tensor.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
fa : array

Calculated FA. Range is 0 <= FA <= 1.

Notes

FA is calculated using the following equation:

\[FA = \sqrt{\frac{1}{2}\frac{(\lambda_1-\lambda_2)^2+(\lambda_1- \lambda_3)^2+(\lambda_2-\lambda_3)^2}{\lambda_1^2+ \lambda_2^2+\lambda_3^2}}\]

get_sphere

dipy.reconst.csdeconv.get_sphere(name='symmetric362')

provide triangulated spheres

Parameters:
name : str

which sphere - one of: * ‘symmetric362’ * ‘symmetric642’ * ‘symmetric724’ * ‘repulsion724’ * ‘repulsion100’ * ‘repulsion200’

Returns:
sphere : a dipy.core.sphere.Sphere class instance

Examples

>>> import numpy as np
>>> from dipy.data import get_sphere
>>> sphere = get_sphere('symmetric362')
>>> verts, faces = sphere.vertices, sphere.faces
>>> verts.shape == (362, 3)
True
>>> faces.shape == (720, 3)
True
>>> verts, faces = get_sphere('not a sphere name') 
Traceback (most recent call last):
    ...
DataError: No sphere called "not a sphere name"

lazy_index

dipy.reconst.csdeconv.lazy_index(index)

Produces a lazy index

Returns a slice that can be used for indexing an array, if no slice can be made index is returned as is.

lpn

dipy.reconst.csdeconv.lpn(n, z)

Legendre function of the first kind.

Compute sequence of Legendre functions of the first kind (polynomials), Pn(z) and derivatives for all degrees from 0 to n (inclusive).

See also special.legendre for polynomial class.

References

[1]Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

multi_voxel_fit

dipy.reconst.csdeconv.multi_voxel_fit(single_voxel_fit)

Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition

ndindex

dipy.reconst.csdeconv.ndindex(shape)

An N-dimensional iterator object to index arrays.

Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each iteration a tuple of indices is returned; the last dimension is iterated over first.

Parameters:
shape : tuple of ints

The dimensions of the array.

Examples

>>> from dipy.core.ndindex import ndindex
>>> shape = (3, 2, 1)
>>> for index in ndindex(shape):
...     print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

odf_deconv

dipy.reconst.csdeconv.odf_deconv(odf_sh, R, B_reg, lambda_=1.0, tau=0.1, r2_term=False)

ODF constrained-regularized spherical deconvolution using the Sharpening Deconvolution Transform (SDT) [1], [2].

Parameters:
odf_sh : ndarray ((sh_order + 1)*(sh_order + 2)/2,)

ndarray of SH coefficients for the ODF spherical function to be deconvolved

R : ndarray ((sh_order + 1)(sh_order + 2)/2, (sh_order + 1)(sh_order + 2)/2)

SDT matrix in SH basis

B_reg : ndarray ((sh_order + 1)(sh_order + 2)/2, (sh_order + 1)(sh_order + 2)/2)

SH basis matrix used for deconvolution

lambda_ : float

lambda parameter in minimization equation (default 1.0)

tau : float

threshold (tau *max(fODF)) controlling the amplitude below which the corresponding fODF is assumed to be zero.

r2_term : bool

True if ODF is computed from model that uses the \(r^2\) term in the integral. Recall that Tuch’s ODF (used in Q-ball Imaging [1]) and the true normalized ODF definition differ from a \(r^2\) term in the ODF integral. The original Sharpening Deconvolution Transform (SDT) technique [2] is expecting Tuch’s ODF without the \(r^2\) (see [3] for the mathematical details). Now, this function supports ODF that have been computed using the \(r^2\) term because the proper analytical response function has be derived. For example, models such as DSI, GQI, SHORE, CSA, Tensor, Multi-tensor ODFs, should now be deconvolved with the r2_term=True.

Returns:
fodf_sh : ndarray ((sh_order + 1)(sh_order + 2)/2,)

Spherical harmonics coefficients of the constrained-regularized fiber ODF

num_it : int

Number of iterations in the constrained-regularization used for convergence

References

[1](1, 2, 3, 4) Tuch, D. MRM 2004. Q-Ball Imaging.
[2](1, 2, 3, 4) Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions
[3](1, 2) Descoteaux, M, PhD thesis, INRIA Sophia-Antipolis, 2008.

odf_sh_to_sharp

dipy.reconst.csdeconv.odf_sh_to_sharp(odfs_sh, sphere, basis=None, ratio=0.2, sh_order=8, lambda_=1.0, tau=0.1, r2_term=False)

Sharpen odfs using the sharpening deconvolution transform [2]

This function can be used to sharpen any smooth ODF spherical function. In theory, this should only be used to sharpen QballModel ODFs, but in practice, one can play with the deconvolution ratio and sharpen almost any ODF-like spherical function. The constrained-regularization is stable and will not only sharpen the ODF peaks but also regularize the noisy peaks.

Parameters:
odfs_sh : ndarray ((sh_order + 1)*(sh_order + 2)/2, )

array of odfs expressed as spherical harmonics coefficients

sphere : Sphere

sphere used to build the regularization matrix

basis : {None, ‘tournier07’, ‘descoteaux07’}

different spherical harmonic basis: None for the default DIPY basis, tournier07 for the Tournier 2007 [4] basis, and descoteaux07 for the Descoteaux 2007 [3] basis (None defaults to descoteaux07).

ratio : float,

ratio of the smallest vs the largest eigenvalue of the single prolate tensor response function (\(\frac{\lambda_2}{\lambda_1}\))

sh_order : int

maximal SH order of the SH representation

lambda_ : float

lambda parameter (see odfdeconv) (default 1.0)

tau : float

tau parameter in the L matrix construction (see odfdeconv) (default 0.1)

r2_term : bool

True if ODF is computed from model that uses the \(r^2\) term in the integral. Recall that Tuch’s ODF (used in Q-ball Imaging [1]) and the true normalized ODF definition differ from a \(r^2\) term in the ODF integral. The original Sharpening Deconvolution Transform (SDT) technique [2] is expecting Tuch’s ODF without the \(r^2\) (see [3] for the mathematical details). Now, this function supports ODF that have been computed using the \(r^2\) term because the proper analytical response function has be derived. For example, models such as DSI, GQI, SHORE, CSA, Tensor, Multi-tensor ODFs, should now be deconvolved with the r2_term=True.

Returns:
fodf_sh : ndarray

sharpened odf expressed as spherical harmonics coefficients

References

[1](1, 2) Tuch, D. MRM 2004. Q-Ball Imaging.
[2](1, 2, 3, 4) Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions
[3](1, 2, 3) Descoteaux, M., Angelino, E., Fitzgibbons, S. and Deriche, R. Regularized, Fast, and Robust Analytical Q-ball Imaging. Magn. Reson. Med. 2007;58:497-510.
[4](1, 2) Tournier J.D., Calamante F. and Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35(4):1459-1472.

peaks_from_model

dipy.reconst.csdeconv.peaks_from_model(model, data, sphere, relative_peak_threshold, min_separation_angle, mask=None, return_odf=False, return_sh=True, gfa_thr=0, normalize_peaks=False, sh_order=8, sh_basis_type=None, npeaks=5, B=None, invB=None, parallel=False, nbr_processes=None)

Fit the model to data and computes peaks and metrics

Parameters:
model : a model instance

model will be used to fit the data.

sphere : Sphere

The Sphere providing discrete directions for evaluation.

relative_peak_threshold : float

Only return peaks greater than relative_peak_threshold * m where m is the largest peak.

min_separation_angle : float in [0, 90] The minimum distance between

directions. If two peaks are too close only the larger of the two is returned.

mask : array, optional

If mask is provided, voxels that are False in mask are skipped and no peaks are returned.

return_odf : bool

If True, the odfs are returned.

return_sh : bool

If True, the odf as spherical harmonics coefficients is returned

gfa_thr : float

Voxels with gfa less than gfa_thr are skipped, no peaks are returned.

normalize_peaks : bool

If true, all peak values are calculated relative to max(odf).

sh_order : int, optional

Maximum SH order in the SH fit. For sh_order, there will be (sh_order + 1) * (sh_order + 2) / 2 SH coefficients (default 8).

sh_basis_type : {None, ‘tournier07’, ‘descoteaux07’}

None for the default DIPY basis, tournier07 for the Tournier 2007 [2] basis, and descoteaux07 for the Descoteaux 2007 [1] basis (None defaults to descoteaux07).

sh_smooth : float, optional

Lambda-regularization in the SH fit (default 0.0).

npeaks : int

Maximum number of peaks found (default 5 peaks).

B : ndarray, optional

Matrix that transforms spherical harmonics to spherical function sf = np.dot(sh, B).

invB : ndarray, optional

Inverse of B.

parallel: bool

If True, use multiprocessing to compute peaks and metric (default False). Temporary files are saved in the default temporary directory of the system. It can be changed using import tempfile and tempfile.tempdir = '/path/to/tempdir'.

nbr_processes: int

If parallel is True, the number of subprocesses to use (default multiprocessing.cpu_count()).

Returns:
pam : PeaksAndMetrics

An object with gfa, peak_directions, peak_values, peak_indices, odf, shm_coeffs as attributes

References

[1](1, 2) Descoteaux, M., Angelino, E., Fitzgibbons, S. and Deriche, R. Regularized, Fast, and Robust Analytical Q-ball Imaging. Magn. Reson. Med. 2007;58:497-510.
[2](1, 2) Tournier J.D., Calamante F. and Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35(4):1459-1472.

quad

dipy.reconst.csdeconv.quad(func, a, b, args=(), full_output=0, epsabs=1.49e-08, epsrel=1.49e-08, limit=50, points=None, weight=None, wvar=None, wopts=None, maxp1=50, limlst=50)

Compute a definite integral.

Integrate func from a to b (possibly infinite interval) using a technique from the Fortran library QUADPACK.

Parameters:
func : {function, scipy.LowLevelCallable}

A Python function or method to integrate. If func takes many arguments, it is integrated along the axis corresponding to the first argument.

If the user desires improved integration performance, then f may be a scipy.LowLevelCallable with one of the signatures:

double func(double x)
double func(double x, void *user_data)
double func(int n, double *xx)
double func(int n, double *xx, void *user_data)

The user_data is the data contained in the scipy.LowLevelCallable. In the call forms with xx, n is the length of the xx array which contains xx[0] == x and the rest of the items are numbers contained in the args argument of quad.

In addition, certain ctypes call signatures are supported for backward compatibility, but those should not be used in new code.

a : float

Lower limit of integration (use -numpy.inf for -infinity).

b : float

Upper limit of integration (use numpy.inf for +infinity).

args : tuple, optional

Extra arguments to pass to func.

full_output : int, optional

Non-zero to return a dictionary of integration information. If non-zero, warning messages are also suppressed and the message is appended to the output tuple.

Returns:
y : float

The integral of func from a to b.

abserr : float

An estimate of the absolute error in the result.

infodict : dict

A dictionary containing additional information. Run scipy.integrate.quad_explain() for more information.

message

A convergence message.

explain

Appended only with ‘cos’ or ‘sin’ weighting and infinite integration limits, it contains an explanation of the codes in infodict[‘ierlst’]

Other Parameters:
 
epsabs : float or int, optional

Absolute error tolerance.

epsrel : float or int, optional

Relative error tolerance.

limit : float or int, optional

An upper bound on the number of subintervals used in the adaptive algorithm.

points : (sequence of floats,ints), optional

A sequence of break points in the bounded integration interval where local difficulties of the integrand may occur (e.g., singularities, discontinuities). The sequence does not have to be sorted.

weight : float or int, optional

String indicating weighting function. Full explanation for this and the remaining arguments can be found below.

wvar : optional

Variables for use with weighting functions.

wopts : optional

Optional input for reusing Chebyshev moments.

maxp1 : float or int, optional

An upper bound on the number of Chebyshev moments.

limlst : int, optional

Upper bound on the number of cycles (>=3) for use with a sinusoidal weighting and an infinite end-point.

See also

dblquad
double integral
tplquad
triple integral
nquad
n-dimensional integrals (uses quad recursively)
fixed_quad
fixed-order Gaussian quadrature
quadrature
adaptive Gaussian quadrature
odeint
ODE integrator
ode
ODE integrator
simps
integrator for sampled data
romb
integrator for sampled data
scipy.special
for coefficients and roots of orthogonal polynomials

Notes

Extra information for quad() inputs and outputs

If full_output is non-zero, then the third output argument (infodict) is a dictionary with entries as tabulated below. For infinite limits, the range is transformed to (0,1) and the optional outputs are given with respect to this transformed range. Let M be the input argument limit and let K be infodict[‘last’]. The entries are:

‘neval’
The number of function evaluations.
‘last’
The number, K, of subintervals produced in the subdivision process.
‘alist’
A rank-1 array of length M, the first K elements of which are the left end points of the subintervals in the partition of the integration range.
‘blist’
A rank-1 array of length M, the first K elements of which are the right end points of the subintervals.
‘rlist’
A rank-1 array of length M, the first K elements of which are the integral approximations on the subintervals.
‘elist’
A rank-1 array of length M, the first K elements of which are the moduli of the absolute error estimates on the subintervals.
‘iord’
A rank-1 integer array of length M, the first L elements of which are pointers to the error estimates over the subintervals with L=K if K<=M/2+2 or L=M+1-K otherwise. Let I be the sequence infodict['iord'] and let E be the sequence infodict['elist']. Then E[I[1]], ..., E[I[L]] forms a decreasing sequence.

If the input argument points is provided (i.e. it is not None), the following additional outputs are placed in the output dictionary. Assume the points sequence is of length P.

‘pts’
A rank-1 array of length P+2 containing the integration limits and the break points of the intervals in ascending order. This is an array giving the subintervals over which integration will occur.
‘level’
A rank-1 integer array of length M (=limit), containing the subdivision levels of the subintervals, i.e., if (aa,bb) is a subinterval of (pts[1], pts[2]) where pts[0] and pts[2] are adjacent elements of infodict['pts'], then (aa,bb) has level l if |bb-aa| = |pts[2]-pts[1]| * 2**(-l).
‘ndin’
A rank-1 integer array of length P+2. After the first integration over the intervals (pts[1], pts[2]), the error estimates over some of the intervals may have been increased artificially in order to put their subdivision forward. This array has ones in slots corresponding to the subintervals for which this happens.

Weighting the integrand

The input variables, weight and wvar, are used to weight the integrand by a select list of functions. Different integration methods are used to compute the integral with these weighting functions. The possible values of weight and the corresponding weighting functions are.

weight Weight function used wvar
‘cos’ cos(w*x) wvar = w
‘sin’ sin(w*x) wvar = w
‘alg’ g(x) = ((x-a)**alpha)*((b-x)**beta) wvar = (alpha, beta)
‘alg-loga’ g(x)*log(x-a) wvar = (alpha, beta)
‘alg-logb’ g(x)*log(b-x) wvar = (alpha, beta)
‘alg-log’ g(x)*log(x-a)*log(b-x) wvar = (alpha, beta)
‘cauchy’ 1/(x-c) wvar = c

wvar holds the parameter w, (alpha, beta), or c depending on the weight selected. In these expressions, a and b are the integration limits.

For the ‘cos’ and ‘sin’ weighting, additional inputs and outputs are available.

For finite integration limits, the integration is performed using a Clenshaw-Curtis method which uses Chebyshev moments. For repeated calculations, these moments are saved in the output dictionary:

‘momcom’
The maximum level of Chebyshev moments that have been computed, i.e., if M_c is infodict['momcom'] then the moments have been computed for intervals of length |b-a| * 2**(-l), l=0,1,...,M_c.
‘nnlog’
A rank-1 integer array of length M(=limit), containing the subdivision levels of the subintervals, i.e., an element of this array is equal to l if the corresponding subinterval is |b-a|* 2**(-l).
‘chebmo’
A rank-2 array of shape (25, maxp1) containing the computed Chebyshev moments. These can be passed on to an integration over the same interval by passing this array as the second element of the sequence wopts and passing infodict[‘momcom’] as the first element.

If one of the integration limits is infinite, then a Fourier integral is computed (assuming w neq 0). If full_output is 1 and a numerical error is encountered, besides the error message attached to the output tuple, a dictionary is also appended to the output tuple which translates the error codes in the array info['ierlst'] to English messages. The output information dictionary contains the following entries instead of ‘last’, ‘alist’, ‘blist’, ‘rlist’, and ‘elist’:

‘lst’
The number of subintervals needed for the integration (call it K_f).
‘rslst’
A rank-1 array of length M_f=limlst, whose first K_f elements contain the integral contribution over the interval (a+(k-1)c, a+kc) where c = (2*floor(|w|) + 1) * pi / |w| and k=1,2,...,K_f.
‘erlst’
A rank-1 array of length M_f containing the error estimate corresponding to the interval in the same position in infodict['rslist'].
‘ierlst’
A rank-1 integer array of length M_f containing an error flag corresponding to the interval in the same position in infodict['rslist']. See the explanation dictionary (last entry in the output tuple) for the meaning of the codes.

Examples

Calculate \(\int^4_0 x^2 dx\) and compare with an analytic result

>>> from scipy import integrate
>>> x2 = lambda x: x**2
>>> integrate.quad(x2, 0, 4)
(21.333333333333332, 2.3684757858670003e-13)
>>> print(4**3 / 3.)  # analytical result
21.3333333333

Calculate \(\int^\infty_0 e^{-x} dx\)

>>> invexp = lambda x: np.exp(-x)
>>> integrate.quad(invexp, 0, np.inf)
(1.0, 5.842605999138044e-11)
>>> f = lambda x,a : a*x
>>> y, err = integrate.quad(f, 0, 1, args=(1,))
>>> y
0.5
>>> y, err = integrate.quad(f, 0, 1, args=(3,))
>>> y
1.5

Calculate \(\int^1_0 x^2 + y^2 dx\) with ctypes, holding y parameter as 1:

testlib.c =>
    double func(int n, double args[n]){
        return args[0]*args[0] + args[1]*args[1];}
compile to library testlib.*
from scipy import integrate
import ctypes
lib = ctypes.CDLL('/home/.../testlib.*') #use absolute path
lib.func.restype = ctypes.c_double
lib.func.argtypes = (ctypes.c_int,ctypes.c_double)
integrate.quad(lib.func,0,1,(1))
#(1.3333333333333333, 1.4802973661668752e-14)
print((1.0**3/3.0 + 1.0) - (0.0**3/3.0 + 0.0)) #Analytic result
# 1.3333333333333333

Be aware that pulse shapes and other sharp features as compared to the size of the integration interval may not be integrated correctly using this method. A simplified example of this limitation is integrating a y-axis reflected step function with many zero values within the integrals bounds.

>>> y = lambda x: 1 if x<=0 else 0
>>> integrate.quad(y, -1, 1)
(1.0, 1.1102230246251565e-14)
>>> integrate.quad(y, -1, 100)
(1.0000000002199108, 1.0189464580163188e-08)
>>> integrate.quad(y, -1, 10000)
(0.0, 0.0)

real_sph_harm

dipy.reconst.csdeconv.real_sph_harm(m, n, theta, phi)

Compute real spherical harmonics.

Where the real harmonic \(Y^m_n\) is defined to be:

Imag(\(Y^m_n\)) * sqrt(2) if m > 0 \(Y^0_n\) if m = 0 Real(\(Y^|m|_n\)) * sqrt(2) if m < 0

This may take scalar or array arguments. The inputs will be broadcasted against each other.

Parameters:
m : int |m| <= n

The order of the harmonic.

n : int >= 0

The degree of the harmonic.

theta : float [0, 2*pi]

The azimuthal (longitudinal) coordinate.

phi : float [0, pi]

The polar (colatitudinal) coordinate.

Returns:
y_mn : real float

The real harmonic \(Y^m_n\) sampled at theta and phi.

See also

scipy.special.sph_harm

real_sym_sh_basis

dipy.reconst.csdeconv.real_sym_sh_basis(sh_order, theta, phi)

Samples a real symmetric spherical harmonic basis at point on the sphere

Samples the basis functions up to order sh_order at points on the sphere given by theta and phi. The basis functions are defined here the same way as in Descoteaux et al. 2007 [1] where the real harmonic \(Y^m_n\) is defined to be:

Imag(\(Y^m_n\)) * sqrt(2) if m > 0 \(Y^0_n\) if m = 0 Real(\(Y^|m|_n\)) * sqrt(2) if m < 0

This may take scalar or array arguments. The inputs will be broadcasted against each other.

Parameters:
sh_order : int

even int > 0, max spherical harmonic degree

theta : float [0, 2*pi]

The azimuthal (longitudinal) coordinate.

phi : float [0, pi]

The polar (colatitudinal) coordinate.

Returns:
y_mn : real float

The real harmonic \(Y^m_n\) sampled at theta and phi

m : array

The order of the harmonics.

n : array

The degree of the harmonics.

References

[1](1, 2) Descoteaux, M., Angelino, E., Fitzgibbons, S. and Deriche, R. Regularized, Fast, and Robust Analytical Q-ball Imaging. Magn. Reson. Med. 2007;58:497-510.

recursive_response

dipy.reconst.csdeconv.recursive_response(gtab, data, mask=None, sh_order=8, peak_thr=0.01, init_fa=0.08, init_trace=0.0021, iter=8, convergence=0.001, parallel=True, nbr_processes=None, sphere=<dipy.core.sphere.HemiSphere object>)

Recursive calibration of response function using peak threshold

Parameters:
gtab : GradientTable
data : ndarray

diffusion data

mask : ndarray, optional

mask for recursive calibration, for example a white matter mask. It has shape data.shape[0:3] and dtype=bool. Default: use the entire data array.

sh_order : int, optional

maximal spherical harmonics order. Default: 8

peak_thr : float, optional

peak threshold, how large the second peak can be relative to the first peak in order to call it a single fiber population [1]. Default: 0.01

init_fa : float, optional

FA of the initial ‘fat’ response function (tensor). Default: 0.08

init_trace : float, optional

trace of the initial ‘fat’ response function (tensor). Default: 0.0021

iter : int, optional

maximum number of iterations for calibration. Default: 8.

convergence : float, optional

convergence criterion, maximum relative change of SH coefficients. Default: 0.001.

parallel : bool, optional

Whether to use parallelization in peak-finding during the calibration procedure. Default: True

nbr_processes: int

If parallel is True, the number of subprocesses to use (default multiprocessing.cpu_count()).

sphere : Sphere, optional.

The sphere used for peak finding. Default: default_sphere.

Returns:
response : ndarray

response function in SH coefficients

Notes

In CSD there is an important pre-processing step: the estimation of the fiber response function. Using an FA threshold is not a very robust method. It is dependent on the dataset (non-informed used subjectivity), and still depends on the diffusion tensor (FA and first eigenvector), which has low accuracy at high b-value. This function recursively calibrates the response function, for more information see [1].

References

[1]Tax, C.M.W., et al. NeuroImage 2014. Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data.

response_from_mask

dipy.reconst.csdeconv.response_from_mask(gtab, data, mask)

Estimate the response function from a given mask.

Parameters:
gtab : GradientTable
data : ndarray

Diffusion data

mask : ndarray

Mask to use for the estimation of the response function. For example a mask of the white matter voxels with FA values higher than 0.7 (see [1]).

Returns:
response : tuple, (2,)

(evals, S0)

ratio : float

The ratio between smallest versus largest eigenvalue of the response.

Notes

See csdeconv.auto_response() or csdeconv.recursive_response() if you don’t have a computed mask for the response function estimation.

References

[1](1, 2) Tournier, J.D., et al. NeuroImage 2004. Direct estimation of the

fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution

sh_to_rh

dipy.reconst.csdeconv.sh_to_rh(r_sh, m, n)

Spherical harmonics (SH) to rotational harmonics (RH)

Calculate the rotational harmonic decomposition up to harmonic order m, degree n for an axially and antipodally symmetric function. Note that all m != 0 coefficients will be ignored as axial symmetry is assumed. Hence, there will be (sh_order/2 + 1) non-zero coefficients.

Parameters:
r_sh : ndarray (N,)

ndarray of SH coefficients for the single fiber response function. These coefficients must correspond to the real spherical harmonic functions produced by shm.real_sph_harm.

m : ndarray (N,)

The order of the spherical harmonic function associated with each coefficient.

n : ndarray (N,)

The degree of the spherical harmonic function associated with each coefficient.

Returns:
r_rh : ndarray ((sh_order + 1)*(sh_order + 2)/2,)

Rotational harmonics coefficients representing the input r_sh

See also

shm.real_sph_harm, shm.real_sym_sh_basis

References

[1]Tournier, J.D., et al. NeuroImage 2007. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution

single_tensor

dipy.reconst.csdeconv.single_tensor(gtab, S0=1, evals=None, evecs=None, snr=None)

Simulated Q-space signal with a single tensor.

Parameters:
gtab : GradientTable

Measurement directions.

S0 : double,

Strength of signal in the presence of no diffusion gradient (also called the b=0 value).

evals : (3,) ndarray

Eigenvalues of the diffusion tensor. By default, values typical for prolate white matter are used.

evecs : (3, 3) ndarray

Eigenvectors of the tensor. You can also think of this as a rotation matrix that transforms the direction of the tensor. The eigenvectors need to be column wise.

snr : float

Signal to noise ratio, assuming Rician noise. None implies no noise.

Returns:
S : (N,) ndarray

Simulated signal: S(q, tau) = S_0 e^(-b g^T R D R.T g).

References

[1]M. Descoteaux, “High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation and Tractography”, PhD thesis, University of Nice-Sophia Antipolis, p. 42, 2008.
[2]E. Stejskal and J. Tanner, “Spin diffusion measurements: spin echos in the presence of a time-dependent field gradient”, Journal of Chemical Physics, nr. 42, pp. 288–292, 1965.

sph_harm_ind_list

dipy.reconst.csdeconv.sph_harm_ind_list(sh_order)

Returns the degree (n) and order (m) of all the symmetric spherical harmonics of degree less then or equal to sh_order. The results, m_list and n_list are kx1 arrays, where k depends on sh_order. They can be passed to real_sph_harm().

Parameters:
sh_order : int

even int > 0, max degree to return

Returns:
m_list : array

orders of even spherical harmonics

n_list : array

degrees of even spherical harmonics

See also

real_sph_harm

vec2vec_rotmat

dipy.reconst.csdeconv.vec2vec_rotmat(u, v)

rotation matrix from 2 unit vectors

u, v being unit 3d vectors return a 3x3 rotation matrix R than aligns u to v.

In general there are many rotations that will map u to v. If S is any rotation using v as an axis then R.S will also map u to v since (S.R)u = S(Ru) = Sv = v. The rotation R returned by vec2vec_rotmat leaves fixed the perpendicular to the plane spanned by u and v.

The transpose of R will align v to u.

Parameters:
u : array, shape(3,)
v : array, shape(3,)
Returns:
R : array, shape(3,3)

Examples

>>> import numpy as np
>>> from dipy.core.geometry import vec2vec_rotmat
>>> u=np.array([1,0,0])
>>> v=np.array([0,1,0])
>>> R=vec2vec_rotmat(u,v)
>>> np.dot(R,u)
array([ 0.,  1.,  0.])
>>> np.dot(R.T,v)
array([ 1.,  0.,  0.])

DiffusionKurtosisFit

class dipy.reconst.dki.DiffusionKurtosisFit(model, model_params)

Bases: dipy.reconst.dti.TensorFit

Class for fitting the Diffusion Kurtosis Model

Attributes:
S0_hat
directions

For tracking - return the primary direction in each voxel

evals

Returns the eigenvalues of the tensor as an array

evecs

Returns the eigenvectors of the tensor as an array, columnwise

kt

Returns the 15 independent elements of the kurtosis tensor as an array

quadratic_form

Calculates the 3x3 diffusion tensor for each voxel

shape

Methods

ad() Axial diffusivity (AD) calculated from cached eigenvalues.
adc(sphere) Calculate the apparent diffusion coefficient (ADC) in each direction on
ak([min_kurtosis, max_kurtosis]) Axial Kurtosis (AK) of a diffusion kurtosis tensor [1].
akc(sphere) Calculates the apparent kurtosis coefficient (AKC) in each direction on the sphere for each voxel in the data
color_fa() Color fractional anisotropy of diffusion tensor
fa() Fractional anisotropy (FA) calculated from cached eigenvalues.
ga() Geodesic anisotropy (GA) calculated from cached eigenvalues.
kmax([sphere, gtol, mask]) Computes the maximum value of a single voxel kurtosis tensor
linearity()
Returns:
md() Mean diffusivity (MD) calculated from cached eigenvalues.
mk([min_kurtosis, max_kurtosis]) Computes mean Kurtosis (MK) from the kurtosis tensor.
mode() Tensor mode calculated from cached eigenvalues.
odf(sphere) The diffusion orientation distribution function (dODF).
planarity()
Returns:
predict(gtab[, S0]) Given a DKI model fit, predict the signal on the vertices of a gradient table
rd() Radial diffusivity (RD) calculated from cached eigenvalues.
rk([min_kurtosis, max_kurtosis]) Radial Kurtosis (RK) of a diffusion kurtosis tensor [1].
sphericity()
Returns:
trace() Trace of the tensor calculated from cached eigenvalues.
lower_triangular  
__init__(model, model_params)

Initialize a DiffusionKurtosisFit class instance.

Since DKI is an extension of DTI, class instance is defined as subclass of the TensorFit from dti.py

Parameters:
model : DiffusionKurtosisModel Class instance

Class instance containing the Diffusion Kurtosis Model for the fit

model_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
ak(min_kurtosis=-0.42857142857142855, max_kurtosis=10)

Axial Kurtosis (AK) of a diffusion kurtosis tensor [1].

Parameters:
min_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, axial kurtosis values that are smaller than min_kurtosis are replaced with -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2])

max_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, axial kurtosis values that are larger than max_kurtosis are replaced with max_kurtosis. Default = 10

Returns:
ak : array

Calculated AK.

References

[1](1, 2, 3) Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 65(3), 823-836
[2](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402
akc(sphere)

Calculates the apparent kurtosis coefficient (AKC) in each direction on the sphere for each voxel in the data

Parameters:
sphere : Sphere class instance
Returns:
akc : ndarray

The estimates of the apparent kurtosis coefficient in every direction on the input sphere

Notes

For each sphere direction with coordinates \((n_{1}, n_{2}, n_{3})\), the calculation of AKC is done using formula:

\[AKC(n)=\frac{MD^{2}}{ADC(n)^{2}}\sum_{i=1}^{3}\sum_{j=1}^{3} \sum_{k=1}^{3}\sum_{l=1}^{3}n_{i}n_{j}n_{k}n_{l}W_{ijkl}\]

where \(W_{ijkl}\) are the elements of the kurtosis tensor, MD the mean diffusivity and ADC the apparent diffusion coefficent computed as:

\[ADC(n)=\sum_{i=1}^{3}\sum_{j=1}^{3}n_{i}n_{j}D_{ij}\]

where \(D_{ij}\) are the elements of the diffusion tensor.

kmax(sphere='repulsion100', gtol=1e-05, mask=None)

Computes the maximum value of a single voxel kurtosis tensor

Parameters:
sphere : Sphere class instance, optional

The sphere providing sample directions for the initial search of the maximum value of kurtosis.

gtol : float, optional

This input is to refine kurtosis maximum under the precision of the directions sampled on the sphere class instance. The gradient of the convergence procedure must be less than gtol before successful termination. If gtol is None, fiber direction is directly taken from the initial sampled directions of the given sphere object

Returns:
max_value : float

kurtosis tensor maximum value

kt

Returns the 15 independent elements of the kurtosis tensor as an array

mk(min_kurtosis=-0.42857142857142855, max_kurtosis=10)

Computes mean Kurtosis (MK) from the kurtosis tensor.

Parameters:
min_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, mean kurtosis values that are smaller than min_kurtosis are replaced with min_kurtosis. Default = -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2])

max_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, mean kurtosis values that are larger than max_kurtosis are replaced with max_kurtosis. Default = 10

Returns:
mk : array

Calculated MK.

Notes

The MK analytical solution is calculated using the following equation [1]:

\[\begin{split}MK=F_1(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{1111}+ F_1(\lambda_2,\lambda_1,\lambda_3)\hat{W}_{2222}+ F_1(\lambda_3,\lambda_2,\lambda_1)\hat{W}_{3333}+ \\ F_2(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{2233}+ F_2(\lambda_2,\lambda_1,\lambda_3)\hat{W}_{1133}+ F_2(\lambda_3,\lambda_2,\lambda_1)\hat{W}_{1122}\end{split}\]

where \(\hat{W}_{ijkl}\) are the components of the \(W\) tensor in the coordinates system defined by the eigenvectors of the diffusion tensor \(\mathbf{D}\) and

\[\begin{split}F_1(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2} {18(\lambda_1-\lambda_2)(\lambda_1-\lambda_3)} [\frac{\sqrt{\lambda_2\lambda_3}}{\lambda_1} R_F(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)+\\ \frac{3\lambda_1^2-\lambda_1\lambda_2-\lambda_2\lambda_3- \lambda_1\lambda_3} {3\lambda_1 \sqrt{\lambda_2 \lambda_3}} R_D(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)-1 ]\end{split}\]

and

\[\begin{split}F_2(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2} {3(\lambda_2-\lambda_3)^2} [\frac{\lambda_2+\lambda_3}{\sqrt{\lambda_2\lambda_3}} R_F(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)+\\ \frac{2\lambda_1-\lambda_2-\lambda_3}{3\sqrt{\lambda_2 \lambda_3}} R_D(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)-2]\end{split}\]

where \(R_f\) and \(R_d\) are the Carlson’s elliptic integrals.

References

[1](1, 2) Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 65(3), 823-836
[2](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402
predict(gtab, S0=1.0)

Given a DKI model fit, predict the signal on the vertices of a gradient table

Parameters:
gtab : a GradientTable class instance

The gradient table for this prediction

S0 : float or ndarray (optional)

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

Notes

The predicted signal is given by:

\[S(n,b)=S_{0}e^{-bD(n)+\frac{1}{6}b^{2}D(n)^{2}K(n)}\]

\(\mathbf{D(n)}\) and \(\mathbf{K(n)}\) can be computed from the DT and KT using the following equations:

\[D(n)=\sum_{i=1}^{3}\sum_{j=1}^{3}n_{i}n_{j}D_{ij}\]

and

\[K(n)=\frac{MD^{2}}{D(n)^{2}}\sum_{i=1}^{3}\sum_{j=1}^{3} \sum_{k=1}^{3}\sum_{l=1}^{3}n_{i}n_{j}n_{k}n_{l}W_{ijkl}\]

where \(D_{ij}\) and \(W_{ijkl}\) are the elements of the second-order DT and the fourth-order KT tensors, respectively, and \(MD\) is the mean diffusivity.

rk(min_kurtosis=-0.42857142857142855, max_kurtosis=10)

Radial Kurtosis (RK) of a diffusion kurtosis tensor [1].

Parameters:
min_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, axial kurtosis values that are smaller than min_kurtosis are replaced with -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2])

max_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, axial kurtosis values that are larger than max_kurtosis are replaced with max_kurtosis. Default = 10

Returns:
rk : array

Calculated RK.

Notes

RK is calculated with the following equation:

\[K_{\bot} = G_1(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{2222} + G_1(\lambda_1,\lambda_3,\lambda_2)\hat{W}_{3333} + G_2(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{2233}\]

where:

\[G_1(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2}{18\lambda_2(\lambda_2- \lambda_3)} \left (2\lambda_2 + \frac{\lambda_3^2-3\lambda_2\lambda_3}{\sqrt{\lambda_2\lambda_3}} \right)\]

and

\[G_2(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2}{(\lambda_2-\lambda_3)^2} \left ( \frac{\lambda_2+\lambda_3}{\sqrt{\lambda_2\lambda_3}}-2 \right )\]

References

[1](1, 2, 3) Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 65(3), 823-836
[2](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402

DiffusionKurtosisModel

class dipy.reconst.dki.DiffusionKurtosisModel(gtab, fit_method='WLS', *args, **kwargs)

Bases: dipy.reconst.base.ReconstModel

Class for the Diffusion Kurtosis Model

Methods

fit(data[, mask]) Fit method of the DKI model class
predict(dki_params[, S0]) Predict a signal for this DKI model class instance given parameters.
__init__(gtab, fit_method='WLS', *args, **kwargs)

Diffusion Kurtosis Tensor Model [1]

Parameters:
gtab : GradientTable class instance
fit_method : str or callable

str can be one of the following: ‘OLS’ or ‘ULLS’ for ordinary least squares

dki.ols_fit_dki

‘WLS’ or ‘UWLLS’ for weighted ordinary least squares

dki.wls_fit_dki

callable has to have the signature:

fit_method(design_matrix, data, *args, **kwargs)

args, kwargs : arguments and key-word arguments passed to the

fit_method. See dki.ols_fit_dki, dki.wls_fit_dki for details

References

[1]Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011.

Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 65(3), 823-836

fit(data, mask=None)

Fit method of the DKI model class

Parameters:
data : array

The measured signal from one voxel.

mask : array

A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[-1]

predict(dki_params, S0=1.0)

Predict a signal for this DKI model class instance given parameters.

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
S0 : float or ndarray (optional)

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

ReconstModel

class dipy.reconst.dki.ReconstModel(gtab)

Bases: object

Abstract class for signal reconstruction models

Methods

fit  
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data, mask=None, **kwargs)

TensorFit

class dipy.reconst.dki.TensorFit(model, model_params, model_S0=None)

Bases: object

Attributes:
S0_hat
directions

For tracking - return the primary direction in each voxel

evals

Returns the eigenvalues of the tensor as an array

evecs

Returns the eigenvectors of the tensor as an array, columnwise

quadratic_form

Calculates the 3x3 diffusion tensor for each voxel

shape

Methods

ad() Axial diffusivity (AD) calculated from cached eigenvalues.
adc(sphere) Calculate the apparent diffusion coefficient (ADC) in each direction on
color_fa() Color fractional anisotropy of diffusion tensor
fa() Fractional anisotropy (FA) calculated from cached eigenvalues.
ga() Geodesic anisotropy (GA) calculated from cached eigenvalues.
linearity()
Returns:
md() Mean diffusivity (MD) calculated from cached eigenvalues.
mode() Tensor mode calculated from cached eigenvalues.
odf(sphere) The diffusion orientation distribution function (dODF).
planarity()
Returns:
predict(gtab[, S0, step]) Given a model fit, predict the signal on the vertices of a sphere
rd() Radial diffusivity (RD) calculated from cached eigenvalues.
sphericity()
Returns:
trace() Trace of the tensor calculated from cached eigenvalues.
lower_triangular  
__init__(model, model_params, model_S0=None)

Initialize a TensorFit class instance.

S0_hat
ad()

Axial diffusivity (AD) calculated from cached eigenvalues.

Returns:
ad : array (V, 1)

Calculated AD.

Notes

RD is calculated with the following equation:

\[AD = \lambda_1\]
adc(sphere)
Calculate the apparent diffusion coefficient (ADC) in each direction on the sphere for each voxel in the data
Parameters:
sphere : Sphere class instance
Returns:
adc : ndarray

The estimates of the apparent diffusion coefficient in every direction on the input sphere

ec{b} Q ec{b}^T

Where Q is the quadratic form of the tensor.
color_fa()

Color fractional anisotropy of diffusion tensor

directions

For tracking - return the primary direction in each voxel

evals

Returns the eigenvalues of the tensor as an array

evecs

Returns the eigenvectors of the tensor as an array, columnwise

fa()

Fractional anisotropy (FA) calculated from cached eigenvalues.

ga()

Geodesic anisotropy (GA) calculated from cached eigenvalues.

linearity()
Returns:
linearity : array

Calculated linearity of the diffusion tensor [1].

Notes

Linearity is calculated with the following equation:

\[Linearity = \frac{\lambda_1-\lambda_2}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz
F., “Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.
lower_triangular(b0=None)
md()

Mean diffusivity (MD) calculated from cached eigenvalues.

Returns:
md : array (V, 1)

Calculated MD.

Notes

MD is calculated with the following equation:

\[MD = \frac{\lambda_1+\lambda_2+\lambda_3}{3}\]
mode()

Tensor mode calculated from cached eigenvalues.

odf(sphere)

The diffusion orientation distribution function (dODF). This is an estimate of the diffusion distance in each direction

Parameters:
sphere : Sphere class instance.

The dODF is calculated in the vertices of this input.

Returns:
odf : ndarray

The diffusion distance in every direction of the sphere in every voxel in the input data.

Notes

This is based on equation 3 in [Aganj2010]. To re-derive it from scratch, follow steps in [Descoteaux2008], Section 7.9 Equation 7.24 but with an \(r^2\) term in the integral.

References

[Aganj2010](1, 2) Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., & Harel, N. (2010). Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magnetic Resonance in Medicine, 64(2), 554-566. doi:DOI: 10.1002/mrm.22365
[Descoteaux2008](1, 2) Descoteaux, M. (2008). PhD Thesis: High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation and Tractography. ftp://ftp-sop.inria.fr/athena/Publications/PhDs/descoteaux_thesis.pdf
planarity()
Returns:
sphericity : array

Calculated sphericity of the diffusion tensor [1].

Notes

Sphericity is calculated with the following equation:

\[Sphericity = \frac{2 (\lambda_2 - \lambda_3)}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz
F., “Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.
predict(gtab, S0=None, step=None)

Given a model fit, predict the signal on the vertices of a sphere

Parameters:
gtab : a GradientTable class instance

This encodes the directions for which a prediction is made

S0 : float array

The mean non-diffusion weighted signal in each voxel. Default: The fitted S0 value in all voxels if it was fitted. Otherwise 1 in all voxels.

step : int

The chunk size as a number of voxels. Optional parameter with default value 10,000.

In order to increase speed of processing, tensor fitting is done simultaneously over many voxels. This parameter sets the number of voxels that will be fit at once in each iteration. A larger step value should speed things up, but it will also take up more memory. It is advisable to keep an eye on memory consumption as this value is increased.

Notes

The predicted signal is given by:

\[S( heta, b) = S_0 * e^{-b ADC}\]

Where: .. math

ADC =       heta Q  heta^T

:math:` heta` is a unit vector pointing at any direction on the sphere for which a signal is to be predicted and \(b\) is the b value provided in the GradientTable input for that direction

quadratic_form

Calculates the 3x3 diffusion tensor for each voxel

rd()

Radial diffusivity (RD) calculated from cached eigenvalues.

Returns:
rd : array (V, 1)

Calculated RD.

Notes

RD is calculated with the following equation:

\[RD = \frac{\lambda_2 + \lambda_3}{2}\]
shape
sphericity()
Returns:
sphericity : array

Calculated sphericity of the diffusion tensor [1].

Notes

Sphericity is calculated with the following equation:

\[Sphericity = \frac{3 \lambda_3}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz
F., “Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.
trace()

Trace of the tensor calculated from cached eigenvalues.

Returns:
trace : array (V, 1)

Calculated trace.

Notes

The trace is calculated with the following equation:

\[trace = \lambda_1 + \lambda_2 + \lambda_3\]

range

class dipy.reconst.dki.range(stop) → range object

Bases: object

range(start, stop[, step]) -> range object

Return an object that produces a sequence of integers from start (inclusive) to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, …, j-1. start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3. These are exactly the valid indices for a list of 4 elements. When step is given, it specifies the increment (or decrement).

Attributes:
start
step
stop

Methods

count(value)
index(value, [start, [stop]]) Raise ValueError if the value is not present.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

count(value) → integer -- return number of occurrences of value
index(value[, start[, stop]]) → integer -- return index of value.

Raise ValueError if the value is not present.

start
step
stop

Wcons

dipy.reconst.dki.Wcons(k_elements)

Construct the full 4D kurtosis tensors from its 15 independent elements

Parameters:
k_elements : (15,)

elements of the kurtosis tensor in the following order:

.. math::
begin{matrix} ( & W_{xxxx} & W_{yyyy} & W_{zzzz} & W_{xxxy} & W_{xxxz}

& … \ & W_{xyyy} & W_{yyyz} & W_{xzzz} & W_{yzzz} & W_{xxyy} & … \ & W_{xxzz} & W_{yyzz} & W_{xxyz} & W_{xyyz} & W_{xyzz} & & )end{matrix}

Returns:
W : array(3, 3, 3, 3)

Full 4D kurtosis tensor

Wrotate

dipy.reconst.dki.Wrotate(kt, Basis)

Rotate a kurtosis tensor from the standard Cartesian coordinate system to another coordinate system basis

Parameters:
kt : (15,)

Vector with the 15 independent elements of the kurtosis tensor

Basis : array (3, 3)

Vectors of the basis column-wise oriented

inds : array(m, 4) (optional)

Array of vectors containing the four indexes of m specific elements of the rotated kurtosis tensor. If not specified all 15 elements of the rotated kurtosis tensor are computed.

Returns:
Wrot : array (m,) or (15,)

Vector with the m independent elements of the rotated kurtosis tensor. If ‘indices’ is not specified all 15 elements of the rotated kurtosis tensor are computed.

Note
——
KT elements are assumed to be ordered as follows:
.. math::
begin{matrix} ( & W_{xxxx} & W_{yyyy} & W_{zzzz} & W_{xxxy} & W_{xxxz}

& … \ & W_{xyyy} & W_{yyyz} & W_{xzzz} & W_{yzzz} & W_{xxyy} & … \ & W_{xxzz} & W_{yyzz} & W_{xxyz} & W_{xyyz} & W_{xyzz} & & )end{matrix}

References

[1] Hui ES, Cheung MM, Qi L, Wu EX, 2008. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuroimage 42(1): 122-34

Wrotate_element

dipy.reconst.dki.Wrotate_element(kt, indi, indj, indk, indl, B)

Computes the the specified index element of a kurtosis tensor rotated to the coordinate system basis B.

Parameters:
kt : ndarray (x, y, z, 15) or (n, 15)

Array containing the 15 independent elements of the kurtosis tensor

indi : int

Rotated kurtosis tensor element index i (0 for x, 1 for y, 2 for z)

indj : int

Rotated kurtosis tensor element index j (0 for x, 1 for y, 2 for z)

indk : int

Rotated kurtosis tensor element index k (0 for x, 1 for y, 2 for z)

indl: int

Rotated kurtosis tensor element index l (0 for x, 1 for y, 2 for z)

B: array (x, y, z, 3, 3) or (n, 15)

Vectors of the basis column-wise oriented

Returns:
Wre : float

rotated kurtosis tensor element of index ind_i, ind_j, ind_k, ind_l

References

[1] Hui ES, Cheung MM, Qi L, Wu EX, 2008. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuroimage 42(1): 122-34

apparent_kurtosis_coef

dipy.reconst.dki.apparent_kurtosis_coef(dki_params, sphere, min_diffusivity=0, min_kurtosis=-0.42857142857142855)

Calculates the apparent kurtosis coefficient (AKC) in each direction of a sphere [1].

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvectors respectively
  3. Fifteen elements of the kurtosis tensor
sphere : a Sphere class instance

The AKC will be calculated for each of the vertices in the sphere

min_diffusivity : float (optional)

Because negative eigenvalues are not physical and small eigenvalues cause quite a lot of noise in diffusion-based metrics, diffusivity values smaller than min_diffusivity are replaced with min_diffusivity. Default = 0

min_kurtosis : float (optional)

Because high-amplitude negative values of kurtosis are not physicaly and biologicaly pluasible, and these cause artefacts in kurtosis-based measures, directional kurtosis values smaller than min_kurtosis are replaced with min_kurtosis. Default = -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2])

Returns:
akc : ndarray (x, y, z, g) or (n, g)

Apparent kurtosis coefficient (AKC) for all g directions of a sphere.

Notes

For each sphere direction with coordinates \((n_{1}, n_{2}, n_{3})\), the calculation of AKC is done using formula [1]:

\[AKC(n)=\frac{MD^{2}}{ADC(n)^{2}}\sum_{i=1}^{3}\sum_{j=1}^{3} \sum_{k=1}^{3}\sum_{l=1}^{3}n_{i}n_{j}n_{k}n_{l}W_{ijkl}\]

where \(W_{ijkl}\) are the elements of the kurtosis tensor, MD the mean diffusivity and ADC the apparent diffusion coefficent computed as:

\[ADC(n)=\sum_{i=1}^{3}\sum_{j=1}^{3}n_{i}n_{j}D_{ij}\]

where \(D_{ij}\) are the elements of the diffusion tensor.

References

[1](1, 2, 3, 4) Neto Henriques R, Correia MM, Nunes RG, Ferreira HA (2015). Exploring the 3D geometry of the diffusion kurtosis tensor - Impact on the development of robust tractography procedures and novel biomarkers, NeuroImage 111: 85-99
[2](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402

axial_kurtosis

dipy.reconst.dki.axial_kurtosis(dki_params, min_kurtosis=-0.42857142857142855, max_kurtosis=10)

Computes axial Kurtosis (AK) from the kurtosis tensor.

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
min_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, axial kurtosis values that are smaller than min_kurtosis are replaced with min_kurtosis. Default = -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [1])

max_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, axial kurtosis values that are larger than max_kurtosis are replaced with max_kurtosis. Default = 10

Returns:
ak : array

Calculated AK.

References

[1](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402

carlson_rd

dipy.reconst.dki.carlson_rd(x, y, z, errtol=0.0001)

Computes the Carlson’s incomplete elliptic integral of the second kind defined as:

\[R_D = \frac{3}{2} \int_{0}^{\infty} (t+x)^{-\frac{1}{2}} (t+y)^{-\frac{1}{2}}(t+z) ^{-\frac{3}{2}}\]
Parameters:
x : ndarray

First independent variable of the integral.

y : ndarray

Second independent variable of the integral.

z : ndarray

Third independent variable of the integral.

errtol : float

Error tolerance. Integral is computed with relative error less in magnitude than the defined value

Returns:
RD : ndarray

Value of the incomplete second order elliptic integral

carlson_rf

dipy.reconst.dki.carlson_rf(x, y, z, errtol=0.0003)

Computes the Carlson’s incomplete elliptic integral of the first kind defined as:

\[R_F = \frac{1}{2} \int_{0}^{\infty} \left [(t+x)(t+y)(t+z) \right ] ^{-\frac{1}{2}}dt\]
Parameters:
x : ndarray

First independent variable of the integral.

y : ndarray

Second independent variable of the integral.

z : ndarray

Third independent variable of the integral.

errtol : float

Error tolerance. Integral is computed with relative error less in magnitude than the defined value

Returns:
RF : ndarray

Value of the incomplete first order elliptic integral

References

[1]Carlson, B.C., 1994. Numerical computation of real or complex elliptic integrals. arXiv:math/9409227 [math.CA]

cart2sphere

dipy.reconst.dki.cart2sphere(x, y, z)

Return angles for Cartesian 3D coordinates x, y, and z

See doc for sphere2cart for angle conventions and derivation of the formulae.

\(0\le\theta\mathrm{(theta)}\le\pi\) and \(-\pi\le\phi\mathrm{(phi)}\le\pi\)

Parameters:
x : array_like

x coordinate in Cartesian space

y : array_like

y coordinate in Cartesian space

z : array_like

z coordinate

Returns:
r : array

radius

theta : array

inclination (polar) angle

phi : array

azimuth angle

check_multi_b

dipy.reconst.dki.check_multi_b(gtab, n_bvals, non_zero=True, bmag=None)

Check if you have enough different b-values in your gradient table

Parameters:
gtab : GradientTable class instance.
n_bvals : int

The number of different b-values you are checking for.

non_zero : bool

Whether to check only non-zero bvalues. In this case, we will require at least n_bvals non-zero b-values (where non-zero is defined depending on the gtab object’s b0_threshold attribute)

bmag : int

The order of magnitude of the b-values used. The function will normalize the b-values relative \(10^{bmag - 1}\). Default: derive this value from the maximal b-value provided: \(bmag=log_{10}(max(bvals))\).

Returns:
bool : Whether there are at least n_bvals different b-values in the
gradient table used.

decompose_tensor

dipy.reconst.dki.decompose_tensor(tensor, min_diffusivity=0)

Returns eigenvalues and eigenvectors given a diffusion tensor

Computes tensor eigen decomposition to calculate eigenvalues and eigenvectors (Basser et al., 1994a).

Parameters:
tensor : array (…, 3, 3)

Hermitian matrix representing a diffusion tensor.

min_diffusivity : float

Because negative eigenvalues are not physical and small eigenvalues, much smaller than the diffusion weighting, cause quite a lot of noise in metrics such as fa, diffusivity values smaller than min_diffusivity are replaced with min_diffusivity.

Returns:
eigvals : array (…, 3)

Eigenvalues from eigen decomposition of the tensor. Negative eigenvalues are replaced by zero. Sorted from largest to smallest.

eigvecs : array (…, 3, 3)

Associated eigenvectors from eigen decomposition of the tensor. Eigenvectors are columnar (e.g. eigvecs[…, :, j] is associated with eigvals[…, j])

design_matrix

dipy.reconst.dki.design_matrix(gtab)

Constructs B design matrix for DKI

gtab : GradientTable
Measurement directions.
Returns:
B : array (N, 22)

Design matrix or B matrix for the DKI model B[j, :] = (Bxx, Bxy, Bzz, Bxz, Byz, Bzz,

Bxxxx, Byyyy, Bzzzz, Bxxxy, Bxxxz, Bxyyy, Byyyz, Bxzzz, Byzzz, Bxxyy, Bxxzz, Byyzz, Bxxyz, Bxyyz, Bxyzz, BlogS0)

directional_diffusion

dipy.reconst.dki.directional_diffusion(dt, V, min_diffusivity=0)

Calculates the apparent diffusion coefficient (adc) in each direction of a sphere for a single voxel [1].

Parameters:
dt : array (6,)

elements of the diffusion tensor of the voxel.

V : array (g, 3)

g directions of a Sphere in Cartesian coordinates

min_diffusivity : float (optional)

Because negative eigenvalues are not physical and small eigenvalues cause quite a lot of noise in diffusion-based metrics, diffusivity values smaller than min_diffusivity are replaced with min_diffusivity. Default = 0

Returns:
adc : ndarray (g,)

Apparent diffusion coefficient (adc) in all g directions of a sphere for a single voxel.

References

[1](1, 2, 3) Neto Henriques R, Correia MM, Nunes RG, Ferreira HA (2015). Exploring the 3D geometry of the diffusion kurtosis tensor - Impact on the development of robust tractography procedures and novel biomarkers, NeuroImage 111: 85-99

directional_diffusion_variance

dipy.reconst.dki.directional_diffusion_variance(kt, V, min_kurtosis=-0.42857142857142855)

Calculates the apparent diffusion variance (adv) in each direction of a sphere for a single voxel [1].

Parameters:
dt : array (6,)

elements of the diffusion tensor of the voxel.

kt : array (15,)

elements of the kurtosis tensor of the voxel.

V : array (g, 3)

g directions of a Sphere in Cartesian coordinates

min_kurtosis : float (optional)

Because high-amplitude negative values of kurtosis are not physicaly and biologicaly pluasible, and these cause artefacts in kurtosis-based measures, directional kurtosis values smaller than min_kurtosis are replaced with min_kurtosis. Default = -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2]_)

adc : ndarray(g,) (optional)

Apparent diffusion coefficient (adc) in all g directions of a sphere for a single voxel.

adv : ndarray(g,) (optional)

Apparent diffusion variance coefficient (advc) in all g directions of a sphere for a single voxel.

Returns:
adv : ndarray (g,)

Apparent diffusion variance (adv) in all g directions of a sphere for a single voxel.

References

[1](1, 2, 3) Neto Henriques R, Correia MM, Nunes RG, Ferreira HA (2015). Exploring the 3D geometry of the diffusion kurtosis tensor - Impact on the development of robust tractography procedures and novel biomarkers, NeuroImage 111: 85-99

directional_kurtosis

dipy.reconst.dki.directional_kurtosis(dt, md, kt, V, min_diffusivity=0, min_kurtosis=-0.42857142857142855, adc=None, adv=None)

Calculates the apparent kurtosis coefficient (akc) in each direction of a sphere for a single voxel [1].

Parameters:
dt : array (6,)

elements of the diffusion tensor of the voxel.

md : float

mean diffusivity of the voxel

kt : array (15,)

elements of the kurtosis tensor of the voxel.

V : array (g, 3)

g directions of a Sphere in Cartesian coordinates

min_diffusivity : float (optional)

Because negative eigenvalues are not physical and small eigenvalues cause quite a lot of noise in diffusion-based metrics, diffusivity values smaller than min_diffusivity are replaced with min_diffusivity. Default = 0

min_kurtosis : float (optional)

Because high-amplitude negative values of kurtosis are not physicaly and biologicaly pluasible, and these cause artefacts in kurtosis-based measures, directional kurtosis values smaller than min_kurtosis are replaced with min_kurtosis. Default = -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2])

adc : ndarray(g,) (optional)

Apparent diffusion coefficient (adc) in all g directions of a sphere for a single voxel.

adv : ndarray(g,) (optional)

Apparent diffusion variance (advc) in all g directions of a sphere for a single voxel.

Returns:
akc : ndarray (g,)

Apparent kurtosis coefficient (AKC) in all g directions of a sphere for a single voxel.

References

[1](1, 2, 3) Neto Henriques R, Correia MM, Nunes RG, Ferreira HA (2015). Exploring the 3D geometry of the diffusion kurtosis tensor - Impact on the development of robust tractography procedures and novel biomarkers, NeuroImage 111: 85-99
[2](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402

dki_prediction

dipy.reconst.dki.dki_prediction(dki_params, gtab, S0=1.0)

Predict a signal given diffusion kurtosis imaging parameters.

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
gtab : a GradientTable class instance

The gradient table for this prediction

S0 : float or ndarray (optional)

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 150

Returns:
S : (…, N) ndarray

Simulated signal based on the DKI model:

\[S=S_{0}e^{-bD+\]
rac{1}{6}b^{2}D^{2}K}

from_lower_triangular

dipy.reconst.dki.from_lower_triangular(D)

Returns a tensor given the six unique tensor elements

Given the six unique tensor elements (in the order: Dxx, Dxy, Dyy, Dxz, Dyz, Dzz) returns a 3 by 3 tensor. All elements after the sixth are ignored.

Parameters:
D : array_like, (…, >6)

Unique elements of the tensors

Returns:
tensor : ndarray (…, 3, 3)

3 by 3 tensors

get_sphere

dipy.reconst.dki.get_sphere(name='symmetric362')

provide triangulated spheres

Parameters:
name : str

which sphere - one of: * ‘symmetric362’ * ‘symmetric642’ * ‘symmetric724’ * ‘repulsion724’ * ‘repulsion100’ * ‘repulsion200’

Returns:
sphere : a dipy.core.sphere.Sphere class instance

Examples

>>> import numpy as np
>>> from dipy.data import get_sphere
>>> sphere = get_sphere('symmetric362')
>>> verts, faces = sphere.vertices, sphere.faces
>>> verts.shape == (362, 3)
True
>>> faces.shape == (720, 3)
True
>>> verts, faces = get_sphere('not a sphere name') 
Traceback (most recent call last):
    ...
DataError: No sphere called "not a sphere name"

kurtosis_maximum

dipy.reconst.dki.kurtosis_maximum(dki_params, sphere='repulsion100', gtol=0.01, mask=None)

Computes kurtosis maximum value

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eingenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
sphere : Sphere class instance, optional

The sphere providing sample directions for the initial search of the maximal value of kurtosis.

gtol : float, optional

This input is to refine kurtosis maximum under the precision of the directions sampled on the sphere class instance. The gradient of the convergence procedure must be less than gtol before successful termination. If gtol is None, fiber direction is directly taken from the initial sampled directions of the given sphere object

mask : ndarray

A boolean array used to mark the coordinates in the data that should be analyzed that has the shape dki_params.shape[:-1]

Returns:
max_value : float

kurtosis tensor maximum value

max_dir : array (3,)

Cartesian coordinates of the direction of the maximal kurtosis value

local_maxima

dipy.reconst.dki.local_maxima()

Local maxima of a function evaluated on a discrete set of points.

If a function is evaluated on some set of points where each pair of neighboring points is an edge in edges, find the local maxima.

Parameters:
odf : array, 1d, dtype=double

The function evaluated on a set of discrete points.

edges : array (N, 2)

The set of neighbor relations between the points. Every edge, ie edges[i, :], is a pair of neighboring points.

Returns:
peak_values : ndarray

Value of odf at a maximum point. Peak values is sorted in descending order.

peak_indices : ndarray

Indices of maximum points. Sorted in the same order as peak_values so odf[peak_indices[i]] == peak_values[i].

See also

dipy.core.sphere

lower_triangular

dipy.reconst.dki.lower_triangular(tensor, b0=None)

Returns the six lower triangular values of the tensor and a dummy variable if b0 is not None

Parameters:
tensor : array_like (…, 3, 3)

a collection of 3, 3 diffusion tensors

b0 : float

if b0 is not none log(b0) is returned as the dummy variable

Returns:
D : ndarray

If b0 is none, then the shape will be (…, 6) otherwise (…, 7)

mean_diffusivity

dipy.reconst.dki.mean_diffusivity(evals, axis=-1)

Mean Diffusivity (MD) of a diffusion tensor.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
md : array

Calculated MD.

Notes

MD is calculated with the following equation:

\[MD = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}\]

mean_kurtosis

dipy.reconst.dki.mean_kurtosis(dki_params, min_kurtosis=-0.42857142857142855, max_kurtosis=3)

Computes mean Kurtosis (MK) from the kurtosis tensor [1].

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
min_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, mean kurtosis values that are smaller than min_kurtosis are replaced with min_kurtosis. Default = -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2])

max_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, mean kurtosis values that are larger than max_kurtosis are replaced with max_kurtosis. Default = 10

Returns:
mk : array

Calculated MK.

Notes

The MK analytical solution is calculated using the following equation [1]:

\[\begin{split}MK=F_1(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{1111}+ F_1(\lambda_2,\lambda_1,\lambda_3)\hat{W}_{2222}+ F_1(\lambda_3,\lambda_2,\lambda_1)\hat{W}_{3333}+ \\ F_2(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{2233}+ F_2(\lambda_2,\lambda_1,\lambda_3)\hat{W}_{1133}+ F_2(\lambda_3,\lambda_2,\lambda_1)\hat{W}_{1122}\end{split}\]

where \(\hat{W}_{ijkl}\) are the components of the \(W\) tensor in the coordinates system defined by the eigenvectors of the diffusion tensor \(\mathbf{D}\) and

\[ \begin{align}\begin{aligned}\begin{split}F_1(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2} {18(\lambda_1-\lambda_2)(\lambda_1-\lambda_3)} [\frac{\sqrt{\lambda_2\lambda_3}}{\lambda_1} R_F(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)+\\ \frac{3\lambda_1^2-\lambda_1\lambda_2-\lambda_2\lambda_3- \lambda_1\lambda_3} {3\lambda_1 \sqrt{\lambda_2 \lambda_3}} R_D(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)-1 ]\end{split}\\\begin{split}F_2(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2} {3(\lambda_2-\lambda_3)^2} [\frac{\lambda_2+\lambda_3}{\sqrt{\lambda_2\lambda_3}} R_F(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)+\\ \frac{2\lambda_1-\lambda_2-\lambda_3}{3\sqrt{\lambda_2 \lambda_3}} R_D(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)-2]\end{split}\end{aligned}\end{align} \]

where \(R_f\) and \(R_d\) are the Carlson’s elliptic integrals.

References

[1](1, 2, 3, 4) Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 65(3), 823-836
[2](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402

ndindex

dipy.reconst.dki.ndindex(shape)

An N-dimensional iterator object to index arrays.

Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each iteration a tuple of indices is returned; the last dimension is iterated over first.

Parameters:
shape : tuple of ints

The dimensions of the array.

Examples

>>> from dipy.core.ndindex import ndindex
>>> shape = (3, 2, 1)
>>> for index in ndindex(shape):
...     print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

ols_fit_dki

dipy.reconst.dki.ols_fit_dki(design_matrix, data)

Computes ordinary least squares (OLS) fit to calculate the diffusion tensor and kurtosis tensor using a linear regression diffusion kurtosis model [1].

Parameters:
design_matrix : array (g, 22)

Design matrix holding the covariants used to solve for the regression coefficients.

data : array (N, g)

Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data.

Returns:
dki_params : array (N, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor

See also

wls_fit_dki

radial_kurtosis

dipy.reconst.dki.radial_kurtosis(dki_params, min_kurtosis=-0.42857142857142855, max_kurtosis=10)

Radial Kurtosis (RK) of a diffusion kurtosis tensor [1].

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
min_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, radial kurtosis values that are smaller than min_kurtosis are replaced with min_kurtosis. Default = -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2])

max_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, radial kurtosis values that are larger than max_kurtosis are replaced with max_kurtosis. Default = 10

Returns:
rk : array

Calculated RK.

Notes

RK is calculated with the following equation [1]:

\[K_{\bot} = G_1(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{2222} + G_1(\lambda_1,\lambda_3,\lambda_2)\hat{W}_{3333} + G_2(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{2233}\]

where:

\[G_1(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2}{18\lambda_2(\lambda_2- \lambda_3)} \left (2\lambda_2 + \frac{\lambda_3^2-3\lambda_2\lambda_3}{\sqrt{\lambda_2\lambda_3}} \right)\]

and

\[G_2(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2}{(\lambda_2-\lambda_3)^2} \left ( \frac{\lambda_2+\lambda_3}{\sqrt{\lambda_2\lambda_3}}-2\right )\]

References

[1](1, 2, 3, 4) Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 65(3), 823-836
[2](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402

sphere2cart

dipy.reconst.dki.sphere2cart(r, theta, phi)

Spherical to Cartesian coordinates

This is the standard physics convention where theta is the inclination (polar) angle, and phi is the azimuth angle.

Imagine a sphere with center (0,0,0). Orient it with the z axis running south-north, the y axis running west-east and the x axis from posterior to anterior. theta (the inclination angle) is the angle to rotate from the z-axis (the zenith) around the y-axis, towards the x axis. Thus the rotation is counter-clockwise from the point of view of positive y. phi (azimuth) gives the angle of rotation around the z-axis towards the y axis. The rotation is counter-clockwise from the point of view of positive z.

Equivalently, given a point P on the sphere, with coordinates x, y, z, theta is the angle between P and the z-axis, and phi is the angle between the projection of P onto the XY plane, and the X axis.

Geographical nomenclature designates theta as ‘co-latitude’, and phi as ‘longitude’

Parameters:
r : array_like

radius

theta : array_like

inclination or polar angle

phi : array_like

azimuth angle

Returns:
x : array

x coordinate(s) in Cartesion space

y : array

y coordinate(s) in Cartesian space

z : array

z coordinate

Notes

See these pages:

for excellent discussion of the many different conventions possible. Here we use the physics conventions, used in the wikipedia page.

Derivations of the formulae are simple. Consider a vector x, y, z of length r (norm of x, y, z). The inclination angle (theta) can be found from: cos(theta) == z / r -> z == r * cos(theta). This gives the hypotenuse of the projection onto the XY plane, which we will call Q. Q == r*sin(theta). Now x / Q == cos(phi) -> x == r * sin(theta) * cos(phi) and so on.

We have deliberately named this function sphere2cart rather than sph2cart to distinguish it from the Matlab function of that name, because the Matlab function uses an unusual convention for the angles that we did not want to replicate. The Matlab function is trivial to implement with the formulae given in the Matlab help.

split_dki_param

dipy.reconst.dki.split_dki_param(dki_params)

Extract the diffusion tensor eigenvalues, the diffusion tensor eigenvector matrix, and the 15 independent elements of the kurtosis tensor from the model parameters estimated from the DKI model

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
Returns:
eigvals : array (x, y, z, 3) or (n, 3)

Eigenvalues from eigen decomposition of the tensor.

eigvecs : array (x, y, z, 3, 3) or (n, 3, 3)

Associated eigenvectors from eigen decomposition of the tensor. Eigenvectors are columnar (e.g. eigvecs[:,j] is associated with eigvals[j])

kt : array (x, y, z, 15) or (n, 15)

Fifteen elements of the kurtosis tensor

vec_val_vect

dipy.reconst.dki.vec_val_vect()

Vectorize vecs.diag(vals).`vecs`.T for last 2 dimensions of vecs

Parameters:
vecs : shape (…, M, N) array

containing tensor in last two dimensions; M, N usually equal to (3, 3)

vals : shape (…, N) array

diagonal values carried in last dimension, ... shape above must match that for vecs

Returns:
res : shape (…, M, M) array

For all the dimensions ellided by ..., loops to get (M, N) vec matrix, and (N,) vals vector, and calculates vec.dot(np.diag(val).dot(vec.T).

Raises:
ValueError : non-matching ... dimensions of vecs, vals
ValueError : non-matching N dimensions of vecs, vals

Examples

Make a 3D array where the first dimension is only 1

>>> vecs = np.arange(9).reshape((1, 3, 3))
>>> vals = np.arange(3).reshape((1, 3))
>>> vec_val_vect(vecs, vals)
array([[[   9.,   24.,   39.],
        [  24.,   66.,  108.],
        [  39.,  108.,  177.]]])

That’s the same as the 2D case (apart from the float casting):

>>> vecs = np.arange(9).reshape((3, 3))
>>> vals = np.arange(3)
>>> np.dot(vecs, np.dot(np.diag(vals), vecs.T))
array([[  9,  24,  39],
       [ 24,  66, 108],
       [ 39, 108, 177]])

wls_fit_dki

dipy.reconst.dki.wls_fit_dki(design_matrix, data)

Computes weighted linear least squares (WLS) fit to calculate the diffusion tensor and kurtosis tensor using a weighted linear regression diffusion kurtosis model [1].

Parameters:
design_matrix : array (g, 22)

Design matrix holding the covariants used to solve for the regression coefficients.

data : array (N, g)

Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data.

min_signal : default = 1

All values below min_signal are repalced with min_signal. This is done in order to avoid taking log(0) durring the tensor fitting.

Returns:
dki_params : array (N, 27)

All parameters estimated from the diffusion kurtosis model for all N voxels. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor

DiffusionKurtosisFit

class dipy.reconst.dki_micro.DiffusionKurtosisFit(model, model_params)

Bases: dipy.reconst.dti.TensorFit

Class for fitting the Diffusion Kurtosis Model

Attributes:
S0_hat
directions

For tracking - return the primary direction in each voxel

evals

Returns the eigenvalues of the tensor as an array

evecs

Returns the eigenvectors of the tensor as an array, columnwise

kt

Returns the 15 independent elements of the kurtosis tensor as an array

quadratic_form

Calculates the 3x3 diffusion tensor for each voxel

shape

Methods

ad() Axial diffusivity (AD) calculated from cached eigenvalues.
adc(sphere) Calculate the apparent diffusion coefficient (ADC) in each direction on
ak([min_kurtosis, max_kurtosis]) Axial Kurtosis (AK) of a diffusion kurtosis tensor [1].
akc(sphere) Calculates the apparent kurtosis coefficient (AKC) in each direction on the sphere for each voxel in the data
color_fa() Color fractional anisotropy of diffusion tensor
fa() Fractional anisotropy (FA) calculated from cached eigenvalues.
ga() Geodesic anisotropy (GA) calculated from cached eigenvalues.
kmax([sphere, gtol, mask]) Computes the maximum value of a single voxel kurtosis tensor
linearity()
Returns:
md() Mean diffusivity (MD) calculated from cached eigenvalues.
mk([min_kurtosis, max_kurtosis]) Computes mean Kurtosis (MK) from the kurtosis tensor.
mode() Tensor mode calculated from cached eigenvalues.
odf(sphere) The diffusion orientation distribution function (dODF).
planarity()
Returns:
predict(gtab[, S0]) Given a DKI model fit, predict the signal on the vertices of a gradient table
rd() Radial diffusivity (RD) calculated from cached eigenvalues.
rk([min_kurtosis, max_kurtosis]) Radial Kurtosis (RK) of a diffusion kurtosis tensor [1].
sphericity()
Returns:
trace() Trace of the tensor calculated from cached eigenvalues.
lower_triangular  
__init__(model, model_params)

Initialize a DiffusionKurtosisFit class instance.

Since DKI is an extension of DTI, class instance is defined as subclass of the TensorFit from dti.py

Parameters:
model : DiffusionKurtosisModel Class instance

Class instance containing the Diffusion Kurtosis Model for the fit

model_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
ak(min_kurtosis=-0.42857142857142855, max_kurtosis=10)

Axial Kurtosis (AK) of a diffusion kurtosis tensor [1].

Parameters:
min_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, axial kurtosis values that are smaller than min_kurtosis are replaced with -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2])

max_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, axial kurtosis values that are larger than max_kurtosis are replaced with max_kurtosis. Default = 10

Returns:
ak : array

Calculated AK.

References

[1](1, 2, 3) Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 65(3), 823-836
[2](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402
akc(sphere)

Calculates the apparent kurtosis coefficient (AKC) in each direction on the sphere for each voxel in the data

Parameters:
sphere : Sphere class instance
Returns:
akc : ndarray

The estimates of the apparent kurtosis coefficient in every direction on the input sphere

Notes

For each sphere direction with coordinates \((n_{1}, n_{2}, n_{3})\), the calculation of AKC is done using formula:

\[AKC(n)=\frac{MD^{2}}{ADC(n)^{2}}\sum_{i=1}^{3}\sum_{j=1}^{3} \sum_{k=1}^{3}\sum_{l=1}^{3}n_{i}n_{j}n_{k}n_{l}W_{ijkl}\]

where \(W_{ijkl}\) are the elements of the kurtosis tensor, MD the mean diffusivity and ADC the apparent diffusion coefficent computed as:

\[ADC(n)=\sum_{i=1}^{3}\sum_{j=1}^{3}n_{i}n_{j}D_{ij}\]

where \(D_{ij}\) are the elements of the diffusion tensor.

kmax(sphere='repulsion100', gtol=1e-05, mask=None)

Computes the maximum value of a single voxel kurtosis tensor

Parameters:
sphere : Sphere class instance, optional

The sphere providing sample directions for the initial search of the maximum value of kurtosis.

gtol : float, optional

This input is to refine kurtosis maximum under the precision of the directions sampled on the sphere class instance. The gradient of the convergence procedure must be less than gtol before successful termination. If gtol is None, fiber direction is directly taken from the initial sampled directions of the given sphere object

Returns:
max_value : float

kurtosis tensor maximum value

kt

Returns the 15 independent elements of the kurtosis tensor as an array

mk(min_kurtosis=-0.42857142857142855, max_kurtosis=10)

Computes mean Kurtosis (MK) from the kurtosis tensor.

Parameters:
min_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, mean kurtosis values that are smaller than min_kurtosis are replaced with min_kurtosis. Default = -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2])

max_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, mean kurtosis values that are larger than max_kurtosis are replaced with max_kurtosis. Default = 10

Returns:
mk : array

Calculated MK.

Notes

The MK analytical solution is calculated using the following equation [1]:

\[\begin{split}MK=F_1(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{1111}+ F_1(\lambda_2,\lambda_1,\lambda_3)\hat{W}_{2222}+ F_1(\lambda_3,\lambda_2,\lambda_1)\hat{W}_{3333}+ \\ F_2(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{2233}+ F_2(\lambda_2,\lambda_1,\lambda_3)\hat{W}_{1133}+ F_2(\lambda_3,\lambda_2,\lambda_1)\hat{W}_{1122}\end{split}\]

where \(\hat{W}_{ijkl}\) are the components of the \(W\) tensor in the coordinates system defined by the eigenvectors of the diffusion tensor \(\mathbf{D}\) and

\[\begin{split}F_1(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2} {18(\lambda_1-\lambda_2)(\lambda_1-\lambda_3)} [\frac{\sqrt{\lambda_2\lambda_3}}{\lambda_1} R_F(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)+\\ \frac{3\lambda_1^2-\lambda_1\lambda_2-\lambda_2\lambda_3- \lambda_1\lambda_3} {3\lambda_1 \sqrt{\lambda_2 \lambda_3}} R_D(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)-1 ]\end{split}\]

and

\[\begin{split}F_2(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2} {3(\lambda_2-\lambda_3)^2} [\frac{\lambda_2+\lambda_3}{\sqrt{\lambda_2\lambda_3}} R_F(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)+\\ \frac{2\lambda_1-\lambda_2-\lambda_3}{3\sqrt{\lambda_2 \lambda_3}} R_D(\frac{\lambda_1}{\lambda_2},\frac{\lambda_1}{\lambda_3},1)-2]\end{split}\]

where \(R_f\) and \(R_d\) are the Carlson’s elliptic integrals.

References

[1](1, 2) Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 65(3), 823-836
[2](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402
predict(gtab, S0=1.0)

Given a DKI model fit, predict the signal on the vertices of a gradient table

Parameters:
gtab : a GradientTable class instance

The gradient table for this prediction

S0 : float or ndarray (optional)

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

Notes

The predicted signal is given by:

\[S(n,b)=S_{0}e^{-bD(n)+\frac{1}{6}b^{2}D(n)^{2}K(n)}\]

\(\mathbf{D(n)}\) and \(\mathbf{K(n)}\) can be computed from the DT and KT using the following equations:

\[D(n)=\sum_{i=1}^{3}\sum_{j=1}^{3}n_{i}n_{j}D_{ij}\]

and

\[K(n)=\frac{MD^{2}}{D(n)^{2}}\sum_{i=1}^{3}\sum_{j=1}^{3} \sum_{k=1}^{3}\sum_{l=1}^{3}n_{i}n_{j}n_{k}n_{l}W_{ijkl}\]

where \(D_{ij}\) and \(W_{ijkl}\) are the elements of the second-order DT and the fourth-order KT tensors, respectively, and \(MD\) is the mean diffusivity.

rk(min_kurtosis=-0.42857142857142855, max_kurtosis=10)

Radial Kurtosis (RK) of a diffusion kurtosis tensor [1].

Parameters:
min_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, axial kurtosis values that are smaller than min_kurtosis are replaced with -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2])

max_kurtosis : float (optional)

To keep kurtosis values within a plausible biophysical range, axial kurtosis values that are larger than max_kurtosis are replaced with max_kurtosis. Default = 10

Returns:
rk : array

Calculated RK.

Notes

RK is calculated with the following equation:

\[K_{\bot} = G_1(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{2222} + G_1(\lambda_1,\lambda_3,\lambda_2)\hat{W}_{3333} + G_2(\lambda_1,\lambda_2,\lambda_3)\hat{W}_{2233}\]

where:

\[G_1(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2}{18\lambda_2(\lambda_2- \lambda_3)} \left (2\lambda_2 + \frac{\lambda_3^2-3\lambda_2\lambda_3}{\sqrt{\lambda_2\lambda_3}} \right)\]

and

\[G_2(\lambda_1,\lambda_2,\lambda_3)= \frac{(\lambda_1+\lambda_2+\lambda_3)^2}{(\lambda_2-\lambda_3)^2} \left ( \frac{\lambda_2+\lambda_3}{\sqrt{\lambda_2\lambda_3}}-2 \right )\]

References

[1](1, 2, 3) Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 65(3), 823-836
[2](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402

DiffusionKurtosisModel

class dipy.reconst.dki_micro.DiffusionKurtosisModel(gtab, fit_method='WLS', *args, **kwargs)

Bases: dipy.reconst.base.ReconstModel

Class for the Diffusion Kurtosis Model

Methods

fit(data[, mask]) Fit method of the DKI model class
predict(dki_params[, S0]) Predict a signal for this DKI model class instance given parameters.
__init__(gtab, fit_method='WLS', *args, **kwargs)

Diffusion Kurtosis Tensor Model [1]

Parameters:
gtab : GradientTable class instance
fit_method : str or callable

str can be one of the following: ‘OLS’ or ‘ULLS’ for ordinary least squares

dki.ols_fit_dki

‘WLS’ or ‘UWLLS’ for weighted ordinary least squares

dki.wls_fit_dki

callable has to have the signature:

fit_method(design_matrix, data, *args, **kwargs)

args, kwargs : arguments and key-word arguments passed to the

fit_method. See dki.ols_fit_dki, dki.wls_fit_dki for details

References

[1]Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011.

Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 65(3), 823-836

fit(data, mask=None)

Fit method of the DKI model class

Parameters:
data : array

The measured signal from one voxel.

mask : array

A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[-1]

predict(dki_params, S0=1.0)

Predict a signal for this DKI model class instance given parameters.

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
S0 : float or ndarray (optional)

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

KurtosisMicrostructuralFit

class dipy.reconst.dki_micro.KurtosisMicrostructuralFit(model, model_params)

Bases: dipy.reconst.dki.DiffusionKurtosisFit

Class for fitting the Diffusion Kurtosis Microstructural Model

Attributes:
S0_hat
awf

Returns the volume fraction of the restricted diffusion compartment also known as axonal water fraction.

axonal_diffusivity

Returns the axonal diffusivity defined as the restricted diffusion tensor trace [1].

directions

For tracking - return the primary direction in each voxel

evals

Returns the eigenvalues of the tensor as an array

evecs

Returns the eigenvectors of the tensor as an array, columnwise

hindered_ad

Returns the axial diffusivity of the hindered compartment.

hindered_evals

Returns the eigenvalues of the hindered diffusion compartment.

hindered_rd

Returns the radial diffusivity of the hindered compartment.

kt

Returns the 15 independent elements of the kurtosis tensor as an array

quadratic_form

Calculates the 3x3 diffusion tensor for each voxel

restricted_evals

Returns the eigenvalues of the restricted diffusion compartment.

shape
tortuosity

Returns the tortuosity of the hindered diffusion which is defined by ADe / RDe, where ADe and RDe are the axial and radial diffusivities of the hindered compartment [1].

Methods

ad() Axial diffusivity (AD) calculated from cached eigenvalues.
adc(sphere) Calculate the apparent diffusion coefficient (ADC) in each direction on
ak([min_kurtosis, max_kurtosis]) Axial Kurtosis (AK) of a diffusion kurtosis tensor [R0b1a747e81c9-1].
akc(sphere) Calculates the apparent kurtosis coefficient (AKC) in each direction on the sphere for each voxel in the data
color_fa() Color fractional anisotropy of diffusion tensor
fa() Fractional anisotropy (FA) calculated from cached eigenvalues.
ga() Geodesic anisotropy (GA) calculated from cached eigenvalues.
kmax([sphere, gtol, mask]) Computes the maximum value of a single voxel kurtosis tensor
linearity()
Returns:
md() Mean diffusivity (MD) calculated from cached eigenvalues.
mk([min_kurtosis, max_kurtosis]) Computes mean Kurtosis (MK) from the kurtosis tensor.
mode() Tensor mode calculated from cached eigenvalues.
odf(sphere) The diffusion orientation distribution function (dODF).
planarity()
Returns:
predict(gtab[, S0]) Given a DKI microstructural model fit, predict the signal on the vertices of a gradient table
rd() Radial diffusivity (RD) calculated from cached eigenvalues.
rk([min_kurtosis, max_kurtosis]) Radial Kurtosis (RK) of a diffusion kurtosis tensor [Rc4101656d30e-1].
sphericity()
Returns:
trace() Trace of the tensor calculated from cached eigenvalues.
lower_triangular  
__init__(model, model_params)

Initialize a KurtosisMicrostructural Fit class instance.

Parameters:
model : DiffusionKurtosisModel Class instance

Class instance containing the Diffusion Kurtosis Model for the fit

model_params : ndarray (x, y, z, 40) or (n, 40)

All parameters estimated from the diffusion kurtosis microstructural model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
  4. Six elements of the hindered diffusion tensor
  5. Six elements of the restricted diffusion tensor
  6. Axonal water fraction

References

[1]Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006
awf

Returns the volume fraction of the restricted diffusion compartment also known as axonal water fraction.

References

[1]Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006
axonal_diffusivity

Returns the axonal diffusivity defined as the restricted diffusion tensor trace [1].

References

[1](1, 2) Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006
hindered_ad

Returns the axial diffusivity of the hindered compartment.

References

[1]Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006
hindered_evals

Returns the eigenvalues of the hindered diffusion compartment.

References

[1]Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006
hindered_rd

Returns the radial diffusivity of the hindered compartment.

References

[1]Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006
predict(gtab, S0=1.0)

Given a DKI microstructural model fit, predict the signal on the vertices of a gradient table

gtab : a GradientTable class instance
The gradient table for this prediction
S0 : float or ndarray (optional)
The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

Notes

The predicted signal is given by:

\(S(\theta, b) = S_0 * [f * e^{-b ADC_{r}} + (1-f) * e^{-b ADC_{h}]\), where \(ADC_{r}\) and \(ADC_{h}\) are the apparent diffusion coefficients of the diffusion hindered and restricted compartment for a given direction \(\theta\), \(b\) is the b value provided in the GradientTable input for that direction, \(f\) is the volume fraction of the restricted diffusion compartment (also known as the axonal water fraction).

restricted_evals

Returns the eigenvalues of the restricted diffusion compartment.

References

[1]Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006
tortuosity

Returns the tortuosity of the hindered diffusion which is defined by ADe / RDe, where ADe and RDe are the axial and radial diffusivities of the hindered compartment [1].

References

[1](1, 2) Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006

KurtosisMicrostructureModel

class dipy.reconst.dki_micro.KurtosisMicrostructureModel(gtab, fit_method='WLS', *args, **kwargs)

Bases: dipy.reconst.dki.DiffusionKurtosisModel

Class for the Diffusion Kurtosis Microstructural Model

Methods

fit(data[, mask, sphere, gtol, awf_only]) Fit method of the Diffusion Kurtosis Microstructural Model
predict(params[, S0]) Predict a signal for the DKI microstructural model class instance given parameters.
__init__(gtab, fit_method='WLS', *args, **kwargs)

Initialize a KurtosisMicrostrutureModel class instance [1].

Parameters:
gtab : GradientTable class instance
fit_method : str or callable

str can be one of the following: ‘OLS’ or ‘ULLS’ to fit the diffusion tensor and kurtosis tensor using the ordinary linear least squares solution

dki.ols_fit_dki

‘WLS’ or ‘UWLLS’ to fit the diffusion tensor and kurtosis tensor using the ordinary linear least squares solution

dki.wls_fit_dki

callable has to have the signature:

fit_method(design_matrix, data, *args, **kwargs)

args, kwargs : arguments and key-word arguments passed to the

fit_method. See dki.ols_fit_dki, dki.wls_fit_dki for details

References

[1](1, 2) Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006
fit(data, mask=None, sphere='repulsion100', gtol=0.01, awf_only=False)

Fit method of the Diffusion Kurtosis Microstructural Model

Parameters:
data : array

An 4D matrix containing the diffusion-weighted data.

mask : array

A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[-1]

sphere : Sphere class instance, optional

The sphere providing sample directions for the initial search of the maximal value of kurtosis.

gtol : float, optional

This input is to refine kurtosis maxima under the precision of the directions sampled on the sphere class instance. The gradient of the convergence procedure must be less than gtol before successful termination. If gtol is None, fiber direction is directly taken from the initial sampled directions of the given sphere object

awf_only : bool, optiomal

If set to true only the axonal volume fraction is computed from the kurtosis tensor. Default = False

predict(params, S0=1.0)

Predict a signal for the DKI microstructural model class instance given parameters.

Parameters:
params : ndarray (x, y, z, 40) or (n, 40)

All parameters estimated from the diffusion kurtosis microstructural model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
  4. Six elements of the hindered diffusion tensor
  5. Six elements of the restricted diffusion tensor
  6. Axonal water fraction
S0 : float or ndarray (optional)

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

References

[1]Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006

axial_diffusivity

dipy.reconst.dki_micro.axial_diffusivity(evals, axis=-1)

Axial Diffusivity (AD) of a diffusion tensor. Also called parallel diffusivity.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor, must be sorted in descending order along axis.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
ad : array

Calculated AD.

Notes

AD is calculated with the following equation:

\[AD = \lambda_1\]

axonal_water_fraction

dipy.reconst.dki_micro.axonal_water_fraction(dki_params, sphere='repulsion100', gtol=0.01, mask=None)

Computes the axonal water fraction from DKI [1].

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
sphere : Sphere class instance, optional

The sphere providing sample directions for the initial search of the maximal value of kurtosis.

gtol : float, optional

This input is to refine kurtosis maxima under the precision of the directions sampled on the sphere class instance. The gradient of the convergence procedure must be less than gtol before successful termination. If gtol is None, fiber direction is directly taken from the initial sampled directions of the given sphere object

mask : ndarray

A boolean array used to mark the coordinates in the data that should be analyzed that has the shape dki_params.shape[:-1]

Returns:
awf : ndarray (x, y, z) or (n)

Axonal Water Fraction

References

[1](1, 2, 3) Fieremans E, Jensen JH, Helpern JA, 2011. White matter characterization with diffusional kurtosis imaging. Neuroimage 58(1):177-88. doi: 10.1016/j.neuroimage.2011.06.006

decompose_tensor

dipy.reconst.dki_micro.decompose_tensor(tensor, min_diffusivity=0)

Returns eigenvalues and eigenvectors given a diffusion tensor

Computes tensor eigen decomposition to calculate eigenvalues and eigenvectors (Basser et al., 1994a).

Parameters:
tensor : array (…, 3, 3)

Hermitian matrix representing a diffusion tensor.

min_diffusivity : float

Because negative eigenvalues are not physical and small eigenvalues, much smaller than the diffusion weighting, cause quite a lot of noise in metrics such as fa, diffusivity values smaller than min_diffusivity are replaced with min_diffusivity.

Returns:
eigvals : array (…, 3)

Eigenvalues from eigen decomposition of the tensor. Negative eigenvalues are replaced by zero. Sorted from largest to smallest.

eigvecs : array (…, 3, 3)

Associated eigenvectors from eigen decomposition of the tensor. Eigenvectors are columnar (e.g. eigvecs[…, :, j] is associated with eigvals[…, j])

diffusion_components

dipy.reconst.dki_micro.diffusion_components(dki_params, sphere='repulsion100', awf=None, mask=None)

Extracts the restricted and hindered diffusion tensors of well aligned fibers from diffusion kurtosis imaging parameters [1].

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
sphere : Sphere class instance, optional

The sphere providing sample directions to sample the restricted and hindered cellular diffusion tensors. For more details see Fieremans et al., 2011.

awf : ndarray (optional)

Array containing values of the axonal water fraction that has the shape dki_params.shape[:-1]. If not given this will be automatically computed using axonal_water_fraction()” with function’s default precision.

mask : ndarray (optional)

A boolean array used to mark the coordinates in the data that should be analyzed that has the shape dki_params.shape[:-1]

Returns:
edt : ndarray (x, y, z, 6) or (n, 6)

Parameters of the hindered diffusion tensor.

idt : ndarray (x, y, z, 6) or (n, 6)

Parameters of the restricted diffusion tensor.

References

[1](1, 2, 3) Fieremans E, Jensen JH, Helpern JA, 2011. White matter characterization with diffusional kurtosis imaging. Neuroimage 58(1):177-88. doi: 10.1016/j.neuroimage.2011.06.006

directional_diffusion

dipy.reconst.dki_micro.directional_diffusion(dt, V, min_diffusivity=0)

Calculates the apparent diffusion coefficient (adc) in each direction of a sphere for a single voxel [1].

Parameters:
dt : array (6,)

elements of the diffusion tensor of the voxel.

V : array (g, 3)

g directions of a Sphere in Cartesian coordinates

min_diffusivity : float (optional)

Because negative eigenvalues are not physical and small eigenvalues cause quite a lot of noise in diffusion-based metrics, diffusivity values smaller than min_diffusivity are replaced with min_diffusivity. Default = 0

Returns:
adc : ndarray (g,)

Apparent diffusion coefficient (adc) in all g directions of a sphere for a single voxel.

References

[1](1, 2, 3) Neto Henriques R, Correia MM, Nunes RG, Ferreira HA (2015). Exploring the 3D geometry of the diffusion kurtosis tensor - Impact on the development of robust tractography procedures and novel biomarkers, NeuroImage 111: 85-99

directional_kurtosis

dipy.reconst.dki_micro.directional_kurtosis(dt, md, kt, V, min_diffusivity=0, min_kurtosis=-0.42857142857142855, adc=None, adv=None)

Calculates the apparent kurtosis coefficient (akc) in each direction of a sphere for a single voxel [1].

Parameters:
dt : array (6,)

elements of the diffusion tensor of the voxel.

md : float

mean diffusivity of the voxel

kt : array (15,)

elements of the kurtosis tensor of the voxel.

V : array (g, 3)

g directions of a Sphere in Cartesian coordinates

min_diffusivity : float (optional)

Because negative eigenvalues are not physical and small eigenvalues cause quite a lot of noise in diffusion-based metrics, diffusivity values smaller than min_diffusivity are replaced with min_diffusivity. Default = 0

min_kurtosis : float (optional)

Because high-amplitude negative values of kurtosis are not physicaly and biologicaly pluasible, and these cause artefacts in kurtosis-based measures, directional kurtosis values smaller than min_kurtosis are replaced with min_kurtosis. Default = -3./7 (theoretical kurtosis limit for regions that consist of water confined to spherical pores [2])

adc : ndarray(g,) (optional)

Apparent diffusion coefficient (adc) in all g directions of a sphere for a single voxel.

adv : ndarray(g,) (optional)

Apparent diffusion variance (advc) in all g directions of a sphere for a single voxel.

Returns:
akc : ndarray (g,)

Apparent kurtosis coefficient (AKC) in all g directions of a sphere for a single voxel.

References

[1](1, 2, 3) Neto Henriques R, Correia MM, Nunes RG, Ferreira HA (2015). Exploring the 3D geometry of the diffusion kurtosis tensor - Impact on the development of robust tractography procedures and novel biomarkers, NeuroImage 111: 85-99
[2](1, 2) Barmpoutis, A., & Zhuo, J., 2011. Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials. Proceedings of the 8th {IEEE} International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, 262-265. doi: 10.1109/ISBI.2011.5872402

dkimicro_prediction

dipy.reconst.dki_micro.dkimicro_prediction(params, gtab, S0=1)

Signal prediction given the DKI microstructure model parameters.

Parameters:
params : ndarray (x, y, z, 40) or (n, 40)
All parameters estimated from the diffusion kurtosis microstructure model.
Parameters are ordered as follows:
  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
  4. Six elements of the hindered diffusion tensor
  5. Six elements of the restricted diffusion tensor
  6. Axonal water fraction
gtab : a GradientTable class instance

The gradient table for this prediction

S0 : float or ndarray

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

Returns:
S : (…, N) ndarray

Simulated signal based on the DKI microstructure model

Notes

1) The predicted signal is given by: \(S(\theta, b) = S_0 * [f * e^{-b ADC_{r}} + (1-f) * e^{-b ADC_{h}]\), where :math:` ADC_{r} and ADC_{h} are the apparent diffusion coefficients of the diffusion hindered and restricted compartment for a given direction theta:math:, b:math: is the b value provided in the GradientTable input for that direction, `f$ is the volume fraction of the restricted diffusion compartment (also known as the axonal water fraction).

2) In the original article of DKI microstructural model [1], the hindered and restricted tensors were definde as the intra-cellular and extra-cellular diffusion compartments respectively.

dti_design_matrix

dipy.reconst.dki_micro.dti_design_matrix(gtab, dtype=None)

Constructs design matrix for DTI weighted least squares or least squares fitting. (Basser et al., 1994a)

Parameters:
gtab : A GradientTable class instance
dtype : string

Parameter to control the dtype of returned designed matrix

Returns:
design_matrix : array (g,7)

Design matrix or B matrix assuming Gaussian distributed tensor model design_matrix[j, :] = (Bxx, Byy, Bzz, Bxy, Bxz, Byz, dummy)

from_lower_triangular

dipy.reconst.dki_micro.from_lower_triangular(D)

Returns a tensor given the six unique tensor elements

Given the six unique tensor elements (in the order: Dxx, Dxy, Dyy, Dxz, Dyz, Dzz) returns a 3 by 3 tensor. All elements after the sixth are ignored.

Parameters:
D : array_like, (…, >6)

Unique elements of the tensors

Returns:
tensor : ndarray (…, 3, 3)

3 by 3 tensors

get_sphere

dipy.reconst.dki_micro.get_sphere(name='symmetric362')

provide triangulated spheres

Parameters:
name : str

which sphere - one of: * ‘symmetric362’ * ‘symmetric642’ * ‘symmetric724’ * ‘repulsion724’ * ‘repulsion100’ * ‘repulsion200’

Returns:
sphere : a dipy.core.sphere.Sphere class instance

Examples

>>> import numpy as np
>>> from dipy.data import get_sphere
>>> sphere = get_sphere('symmetric362')
>>> verts, faces = sphere.vertices, sphere.faces
>>> verts.shape == (362, 3)
True
>>> faces.shape == (720, 3)
True
>>> verts, faces = get_sphere('not a sphere name') 
Traceback (most recent call last):
    ...
DataError: No sphere called "not a sphere name"

kurtosis_maximum

dipy.reconst.dki_micro.kurtosis_maximum(dki_params, sphere='repulsion100', gtol=0.01, mask=None)

Computes kurtosis maximum value

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eingenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
sphere : Sphere class instance, optional

The sphere providing sample directions for the initial search of the maximal value of kurtosis.

gtol : float, optional

This input is to refine kurtosis maximum under the precision of the directions sampled on the sphere class instance. The gradient of the convergence procedure must be less than gtol before successful termination. If gtol is None, fiber direction is directly taken from the initial sampled directions of the given sphere object

mask : ndarray

A boolean array used to mark the coordinates in the data that should be analyzed that has the shape dki_params.shape[:-1]

Returns:
max_value : float

kurtosis tensor maximum value

max_dir : array (3,)

Cartesian coordinates of the direction of the maximal kurtosis value

lower_triangular

dipy.reconst.dki_micro.lower_triangular(tensor, b0=None)

Returns the six lower triangular values of the tensor and a dummy variable if b0 is not None

Parameters:
tensor : array_like (…, 3, 3)

a collection of 3, 3 diffusion tensors

b0 : float

if b0 is not none log(b0) is returned as the dummy variable

Returns:
D : ndarray

If b0 is none, then the shape will be (…, 6) otherwise (…, 7)

mean_diffusivity

dipy.reconst.dki_micro.mean_diffusivity(evals, axis=-1)

Mean Diffusivity (MD) of a diffusion tensor.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
md : array

Calculated MD.

Notes

MD is calculated with the following equation:

\[MD = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}\]

ndindex

dipy.reconst.dki_micro.ndindex(shape)

An N-dimensional iterator object to index arrays.

Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each iteration a tuple of indices is returned; the last dimension is iterated over first.

Parameters:
shape : tuple of ints

The dimensions of the array.

Examples

>>> from dipy.core.ndindex import ndindex
>>> shape = (3, 2, 1)
>>> for index in ndindex(shape):
...     print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

radial_diffusivity

dipy.reconst.dki_micro.radial_diffusivity(evals, axis=-1)

Radial Diffusivity (RD) of a diffusion tensor. Also called perpendicular diffusivity.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor, must be sorted in descending order along axis.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
rd : array

Calculated RD.

Notes

RD is calculated with the following equation:

\[RD = \frac{\lambda_2 + \lambda_3}{2}\]

split_dki_param

dipy.reconst.dki_micro.split_dki_param(dki_params)

Extract the diffusion tensor eigenvalues, the diffusion tensor eigenvector matrix, and the 15 independent elements of the kurtosis tensor from the model parameters estimated from the DKI model

Parameters:
dki_params : ndarray (x, y, z, 27) or (n, 27)

All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. Fifteen elements of the kurtosis tensor
Returns:
eigvals : array (x, y, z, 3) or (n, 3)

Eigenvalues from eigen decomposition of the tensor.

eigvecs : array (x, y, z, 3, 3) or (n, 3, 3)

Associated eigenvectors from eigen decomposition of the tensor. Eigenvectors are columnar (e.g. eigvecs[:,j] is associated with eigvals[j])

kt : array (x, y, z, 15) or (n, 15)

Fifteen elements of the kurtosis tensor

tortuosity

dipy.reconst.dki_micro.tortuosity(hindered_ad, hindered_rd)

Computes the tortuosity of the hindered diffusion compartment given its axial and radial diffusivities

Parameters:
hindered_ad: ndarray

Array containing the values of the hindered axial diffusivity.

hindered_rd: ndarray

Array containing the values of the hindered radial diffusivity.

trace

dipy.reconst.dki_micro.trace(evals, axis=-1)

Trace of a diffusion tensor.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
trace : array

Calculated trace of the diffusion tensor.

Notes

Trace is calculated with the following equation:

\[Trace = \lambda_1 + \lambda_2 + \lambda_3\]

vec_val_vect

dipy.reconst.dki_micro.vec_val_vect()

Vectorize vecs.diag(vals).`vecs`.T for last 2 dimensions of vecs

Parameters:
vecs : shape (…, M, N) array

containing tensor in last two dimensions; M, N usually equal to (3, 3)

vals : shape (…, N) array

diagonal values carried in last dimension, ... shape above must match that for vecs

Returns:
res : shape (…, M, M) array

For all the dimensions ellided by ..., loops to get (M, N) vec matrix, and (N,) vals vector, and calculates vec.dot(np.diag(val).dot(vec.T).

Raises:
ValueError : non-matching ... dimensions of vecs, vals
ValueError : non-matching N dimensions of vecs, vals

Examples

Make a 3D array where the first dimension is only 1

>>> vecs = np.arange(9).reshape((1, 3, 3))
>>> vals = np.arange(3).reshape((1, 3))
>>> vec_val_vect(vecs, vals)
array([[[   9.,   24.,   39.],
        [  24.,   66.,  108.],
        [  39.,  108.,  177.]]])

That’s the same as the 2D case (apart from the float casting):

>>> vecs = np.arange(9).reshape((3, 3))
>>> vals = np.arange(3)
>>> np.dot(vecs, np.dot(np.diag(vals), vecs.T))
array([[  9,  24,  39],
       [ 24,  66, 108],
       [ 39, 108, 177]])

Cache

class dipy.reconst.dsi.Cache

Bases: object

Cache values based on a key object (such as a sphere or gradient table).

Notes

This class is meant to be used as a mix-in:

class MyModel(Model, Cache):
    pass

class MyModelFit(Fit):
    pass

Inside a method on the fit, typical usage would be:

def odf(sphere):
    M = self.model.cache_get('odf_basis_matrix', key=sphere)

    if M is None:
        M = self._compute_basis_matrix(sphere)
        self.model.cache_set('odf_basis_matrix', key=sphere, value=M)

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

cache_clear()

Clear the cache.

cache_get(tag, key, default=None)

Retrieve a value from the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

default : object

Value to be returned if no cached entry is found.

Returns:
v : object

Value from the cache associated with (tag, key). Returns default if no cached entry is found.

cache_set(tag, key, value)

Store a value in the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

value : object

Value stored in the cache for each unique combination of (tag, key).

Examples

>>> def compute_expensive_matrix(parameters):
...     # Imagine the following computation is very expensive
...     return (p**2 for p in parameters)
>>> c = Cache()
>>> parameters = (1, 2, 3)
>>> X1 = compute_expensive_matrix(parameters)
>>> c.cache_set('expensive_matrix', parameters, X1)
>>> X2 = c.cache_get('expensive_matrix', parameters)
>>> X1 is X2
True

DiffusionSpectrumDeconvFit

class dipy.reconst.dsi.DiffusionSpectrumDeconvFit(model, data)

Bases: dipy.reconst.dsi.DiffusionSpectrumFit

Methods

msd_discrete([normalized]) Calculates the mean squared displacement on the discrete propagator
odf(sphere) Calculates the real discrete odf for a given discrete sphere
pdf() Applies the 3D FFT in the q-space grid to generate the DSI diffusion propagator, remove the background noise with a hard threshold and then deconvolve the propagator with the Lucy-Richardson deconvolution algorithm
rtop_pdf([normalized]) Calculates the return to origin probability from the propagator, which is the propagator evaluated at zero (see Descoteaux et Al.
rtop_signal([filtering]) Calculates the return to origin probability (rtop) from the signal rtop equals to the sum of all signal values
__init__(model, data)

Calculates PDF and ODF and other properties for a single voxel

Parameters:
model : object,

DiffusionSpectrumModel

data : 1d ndarray,

signal values

pdf()

Applies the 3D FFT in the q-space grid to generate the DSI diffusion propagator, remove the background noise with a hard threshold and then deconvolve the propagator with the Lucy-Richardson deconvolution algorithm

DiffusionSpectrumDeconvModel

class dipy.reconst.dsi.DiffusionSpectrumDeconvModel(gtab, qgrid_size=35, r_start=4.1, r_end=13.0, r_step=0.4, filter_width=inf, normalize_peaks=False)

Bases: dipy.reconst.dsi.DiffusionSpectrumModel

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fit method for every voxel in data
__init__(gtab, qgrid_size=35, r_start=4.1, r_end=13.0, r_step=0.4, filter_width=inf, normalize_peaks=False)

Diffusion Spectrum Deconvolution

The idea is to remove the convolution on the DSI propagator that is caused by the truncation of the q-space in the DSI sampling.

..math::
nowrap:
begin{eqnarray*}

P_{dsi}(mathbf{r}) & = & S_{0}^{-1}iiintlimits_{| mathbf{q} | le mathbf{q_{max}}} S(mathbf{q})exp(-i2pimathbf{q}cdotmathbf{r})dmathbf{q} \ & = & S_{0}^{-1}iiintlimits_{mathbf{q}} left( S(mathbf{q}) cdot M(mathbf{q}) right) exp(-i2pimathbf{q}cdotmathbf{r})dmathbf{q} \ & = & P(mathbf{r}) otimes left( S_{0}^{-1}iiintlimits_{mathbf{q}} M(mathbf{q}) exp(-i2pimathbf{q}cdotmathbf{r})dmathbf{q} right) \

end{eqnarray*}

where \(\mathbf{r}\) is the displacement vector and \(\mathbf{q}\) is the wave vector which corresponds to different gradient directions, \(M(\mathbf{q})\) is a mask corresponding to your q-space sampling and \(\otimes\) is the convolution operator [1].

Parameters:
gtab : GradientTable,

Gradient directions and bvalues container class

qgrid_size : int,

has to be an odd number. Sets the size of the q_space grid. For example if qgrid_size is 35 then the shape of the grid will be (35, 35, 35).

r_start : float,

ODF is sampled radially in the PDF. This parameters shows where the sampling should start.

r_end : float,

Radial endpoint of ODF sampling

r_step : float,

Step size of the ODf sampling from r_start to r_end

filter_width : float,

Strength of the hanning filter

References

[1](1, 2) Canales-Rodriguez E.J et al., “Deconvolution in Diffusion

Spectrum Imaging”, Neuroimage, 2010.

[2]Biggs David S.C. et al., “Acceleration of Iterative Image

Restoration Algorithms”, Applied Optics, vol. 36, No. 8, p. 1766-1775, 1997.

fit(data, mask=None)

Fit method for every voxel in data

DiffusionSpectrumFit

class dipy.reconst.dsi.DiffusionSpectrumFit(model, data)

Bases: dipy.reconst.odf.OdfFit

Methods

msd_discrete([normalized]) Calculates the mean squared displacement on the discrete propagator
odf(sphere) Calculates the real discrete odf for a given discrete sphere
pdf([normalized]) Applies the 3D FFT in the q-space grid to generate the diffusion propagator
rtop_pdf([normalized]) Calculates the return to origin probability from the propagator, which is the propagator evaluated at zero (see Descoteaux et Al.
rtop_signal([filtering]) Calculates the return to origin probability (rtop) from the signal rtop equals to the sum of all signal values
__init__(model, data)

Calculates PDF and ODF and other properties for a single voxel

Parameters:
model : object,

DiffusionSpectrumModel

data : 1d ndarray,

signal values

msd_discrete(normalized=True)

Calculates the mean squared displacement on the discrete propagator

..math::
nowrap:
begin{equation}

MSD:{DSI}=int_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty} P(hat{mathbf{r}}) cdot hat{mathbf{r}}^{2} dr_x dr_y dr_z

end{equation}

where \(\hat{\mathbf{r}}\) is a point in the 3D Propagator space (see Wu et al. [1]).

Parameters:
normalized : boolean, optional

Whether to normalize the propagator by its sum in order to obtain a pdf. Default: True

Returns:
msd : float

the mean square displacement

References

[1](1, 2) Wu Y. et al., “Hybrid diffusion imaging”, NeuroImage, vol 36,
  1. 617-629, 2007.
odf(sphere)

Calculates the real discrete odf for a given discrete sphere

..math::
nowrap:
begin{equation}

psi_{DSI}(hat{mathbf{u}})=int_{0}^{infty}P(rhat{mathbf{u}})r^{2}dr

end{equation}

where \(\hat{\mathbf{u}}\) is the unit vector which corresponds to a sphere point.

pdf(normalized=True)

Applies the 3D FFT in the q-space grid to generate the diffusion propagator

rtop_pdf(normalized=True)

Calculates the return to origin probability from the propagator, which is the propagator evaluated at zero (see Descoteaux et Al. [1], Tuch [2], Wu et al. [3]) rtop = P(0)

Parameters:
normalized : boolean, optional

Whether to normalize the propagator by its sum in order to obtain a pdf. Default: True.

Returns:
rtop : float

the return to origin probability

References

[1](1, 2) Descoteaux M. et al., “Multiple q-shell diffusion propagator

imaging”, Medical Image Analysis, vol 15, No. 4, p. 603-621, 2011.

[2](1, 2) Tuch D.S., “Diffusion MRI of Complex Tissue Structure”, PhD Thesis, 2002.
[3](1, 2) Wu Y. et al., “Computation of Diffusion Function Measures

in q -Space Using Magnetic Resonance Hybrid Diffusion Imaging”, IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 27, No. 6, p. 858-865, 2008

rtop_signal(filtering=True)

Calculates the return to origin probability (rtop) from the signal rtop equals to the sum of all signal values

Parameters:
filtering : boolean, optional

Whether to perform Hanning filtering. Default: True

Returns:
rtop : float

the return to origin probability

DiffusionSpectrumModel

class dipy.reconst.dsi.DiffusionSpectrumModel(gtab, qgrid_size=17, r_start=2.1, r_end=6.0, r_step=0.2, filter_width=32, normalize_peaks=False)

Bases: dipy.reconst.odf.OdfModel, dipy.reconst.cache.Cache

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fit method for every voxel in data
__init__(gtab, qgrid_size=17, r_start=2.1, r_end=6.0, r_step=0.2, filter_width=32, normalize_peaks=False)

Diffusion Spectrum Imaging

The theoretical idea underlying this method is that the diffusion propagator \(P(\mathbf{r})\) (probability density function of the average spin displacements) can be estimated by applying 3D FFT to the signal values \(S(\mathbf{q})\)

..math::
nowrap:
begin{eqnarray}

P(mathbf{r}) & = & S_{0}^{-1}int S(mathbf{q})exp(-i2pimathbf{q}cdotmathbf{r})dmathbf{r}

end{eqnarray}

where \(\mathbf{r}\) is the displacement vector and \(\mathbf{q}\) is the wave vector which corresponds to different gradient directions. Method used to calculate the ODFs. Here we implement the method proposed by Wedeen et al. [1].

The main assumption for this model is fast gradient switching and that the acquisition gradients will sit on a keyhole Cartesian grid in q_space [3].

Parameters:
gtab : GradientTable,

Gradient directions and bvalues container class

qgrid_size : int,

has to be an odd number. Sets the size of the q_space grid. For example if qgrid_size is 17 then the shape of the grid will be (17, 17, 17).

r_start : float,

ODF is sampled radially in the PDF. This parameters shows where the sampling should start.

r_end : float,

Radial endpoint of ODF sampling

r_step : float,

Step size of the ODf sampling from r_start to r_end

filter_width : float,

Strength of the hanning filter

See also

dipy.reconst.gqi.GeneralizedQSampling

Notes

A. Have in mind that DSI expects gradients on both hemispheres. If your gradients span only one hemisphere you need to duplicate the data and project them to the other hemisphere before calling this class. The function dipy.reconst.dsi.half_to_full_qspace can be used for this purpose.

B. If you increase the size of the grid (parameter qgrid_size) you will most likely also need to update the r_* parameters. This is because the added zero padding from the increase of gqrid_size also introduces a scaling of the PDF.

  1. We assume that data only one b0 volume is provided.

References

[1](1, 2) Wedeen V.J et al., “Mapping Complex Tissue Architecture With

Diffusion Spectrum Magnetic Resonance Imaging”, MRM 2005.

[2]Canales-Rodriguez E.J et al., “Deconvolution in Diffusion

Spectrum Imaging”, Neuroimage, 2010.

[3](1, 2) Garyfallidis E, “Towards an accurate brain tractography”, PhD

thesis, University of Cambridge, 2012.

Examples

In this example where we provide the data, a gradient table and a reconstruction sphere, we calculate generalized FA for the first voxel in the data with the reconstruction performed using DSI.

>>> import warnings
>>> from dipy.data import dsi_voxels, get_sphere
>>> data, gtab = dsi_voxels()
>>> sphere = get_sphere('symmetric724')
>>> from dipy.reconst.dsi import DiffusionSpectrumModel
>>> ds = DiffusionSpectrumModel(gtab)
>>> dsfit = ds.fit(data)
>>> from dipy.reconst.odf import gfa
>>> np.round(gfa(dsfit.odf(sphere))[0, 0, 0], 2)
0.11
fit(data, mask=None)

Fit method for every voxel in data

OdfFit

class dipy.reconst.dsi.OdfFit(model, data)

Bases: dipy.reconst.base.ReconstFit

Methods

odf(sphere) To be implemented but specific odf models
__init__(model, data)

Initialize self. See help(type(self)) for accurate signature.

odf(sphere)

To be implemented but specific odf models

OdfModel

class dipy.reconst.dsi.OdfModel(gtab)

Bases: dipy.reconst.base.ReconstModel

An abstract class to be sub-classed by specific odf models

All odf models should provide a fit method which may take data as it’s first and only argument.

Methods

fit(data) To be implemented by specific odf models
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data)

To be implemented by specific odf models

LR_deconv

dipy.reconst.dsi.LR_deconv(prop, psf, numit=5, acc_factor=1)

Perform Lucy-Richardson deconvolution algorithm on a 3D array.

Parameters:
prop : 3-D ndarray of dtype float

The 3D volume to be deconvolve

psf : 3-D ndarray of dtype float

The filter that will be used for the deconvolution.

numit : int

Number of Lucy-Richardson iteration to perform.

acc_factor : float

Exponential acceleration factor as in [1].

References

[1](1, 2) Biggs David S.C. et al., “Acceleration of Iterative Image Restoration Algorithms”, Applied Optics, vol. 36, No. 8, p. 1766-1775, 1997.

create_qspace

dipy.reconst.dsi.create_qspace(gtab, origin)

create the 3D grid which holds the signal values (q-space)

Parameters:
gtab : GradientTable
origin : (3,) ndarray

center of qspace

Returns:
qgrid : ndarray

qspace coordinates

create_qtable

dipy.reconst.dsi.create_qtable(gtab, origin)

create a normalized version of gradients

Parameters:
gtab : GradientTable
origin : (3,) ndarray

center of qspace

Returns:
qtable : ndarray

fftn

dipy.reconst.dsi.fftn(x, shape=None, axes=None, overwrite_x=False)

Return multidimensional discrete Fourier transform.

The returned array contains:

y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
   x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)

where d = len(x.shape) and n = x.shape.

Parameters:
x : array_like

The (n-dimensional) array to transform.

shape : tuple of ints, optional

The shape of the result. If both shape and axes (see below) are None, shape is x.shape; if shape is None but axes is not None, then shape is scipy.take(x.shape, axes, axis=0). If shape[i] > x.shape[i], the i-th dimension is padded with zeros. If shape[i] < x.shape[i], the i-th dimension is truncated to length shape[i].

axes : array_like of ints, optional

The axes of x (y if shape is not None) along which the transform is applied.

overwrite_x : bool, optional

If True, the contents of x can be destroyed. Default is False.

Returns:
y : complex-valued n-dimensional numpy array

The (n-dimensional) DFT of the input array.

See also

ifftn

Notes

If x is real-valued, then y[..., j_i, ...] == y[..., n_i-j_i, ...].conjugate().

Both single and double precision routines are implemented. Half precision inputs will be converted to single precision. Non floating-point inputs will be converted to double precision. Long-double precision inputs are not supported.

Examples

>>> from scipy.fftpack import fftn, ifftn
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
>>> np.allclose(y, fftn(ifftn(y)))
True

fftshift

dipy.reconst.dsi.fftshift(x, axes=None)

Shift the zero-frequency component to the center of the spectrum.

This function swaps half-spaces for all axes listed (defaults to all). Note that y[0] is the Nyquist component only if len(x) is even.

Parameters:
x : array_like

Input array.

axes : int or shape tuple, optional

Axes over which to shift. Default is None, which shifts all axes.

Returns:
y : ndarray

The shifted array.

See also

ifftshift
The inverse of fftshift.

Examples

>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0.,  1.,  2.,  3.,  4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])

Shift the zero-frequency component only along the second axis:

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0.,  1.,  2.],
       [ 3.,  4., -4.],
       [-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[ 2.,  0.,  1.],
       [-4.,  3.,  4.],
       [-1., -3., -2.]])

gen_PSF

dipy.reconst.dsi.gen_PSF(qgrid_sampling, siz_x, siz_y, siz_z)

Generate a PSF for DSI Deconvolution by taking the ifft of the binary q-space sampling mask and truncating it to keep only the center.

half_to_full_qspace

dipy.reconst.dsi.half_to_full_qspace(data, gtab)

Half to full Cartesian grid mapping

Useful when dMRI data are provided in one qspace hemisphere as DiffusionSpectrum expects data to be in full qspace.

Parameters:
data : array, shape (X, Y, Z, W)

where (X, Y, Z) volume size and W number of gradient directions

gtab : GradientTable

container for b-values and b-vectors (gradient directions)

Returns:
new_data : array, shape (X, Y, Z, 2 * W -1)
new_gtab : GradientTable

Notes

We assume here that only on b0 is provided with the initial data. If that is not the case then you will need to write your own preparation function before providing the gradients and the data to the DiffusionSpectrumModel class.

hanning_filter

dipy.reconst.dsi.hanning_filter(gtab, filter_width, origin)

create a hanning window

The signal is premultiplied by a Hanning window before Fourier transform in order to ensure a smooth attenuation of the signal at high q values.

Parameters:
gtab : GradientTable
filter_width : int
origin : (3,) ndarray

center of qspace

Returns:
filter : (N,) ndarray

where N is the number of non-b0 gradient directions

ifftshift

dipy.reconst.dsi.ifftshift(x, axes=None)

The inverse of fftshift. Although identical for even-length x, the functions differ by one sample for odd-length x.

Parameters:
x : array_like

Input array.

axes : int or shape tuple, optional

Axes over which to calculate. Defaults to None, which shifts all axes.

Returns:
y : ndarray

The shifted array.

See also

fftshift
Shift zero-frequency component to the center of the spectrum.

Examples

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0.,  1.,  2.],
       [ 3.,  4., -4.],
       [-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0.,  1.,  2.],
       [ 3.,  4., -4.],
       [-3., -2., -1.]])

map_coordinates

dipy.reconst.dsi.map_coordinates(input, coordinates, output=None, order=3, mode='constant', cval=0.0, prefilter=True)

Map the input array to new coordinates by interpolation.

The array of coordinates is used to find, for each point in the output, the corresponding coordinates in the input. The value of the input at those coordinates is determined by spline interpolation of the requested order.

The shape of the output is derived from that of the coordinate array by dropping the first axis. The values of the array along the first axis are the coordinates in the input array at which the output value is found.

Parameters:
input : array_like

The input array.

coordinates : array_like

The coordinates at which input is evaluated.

output : array or dtype, optional

The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.

order : int, optional

The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional

The mode parameter determines how the input array is extended when the filter overlaps a border. Default is ‘reflect’. Behavior for each valid value is as follows:

‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.

‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)

The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)

The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)

The input is extended by wrapping around to the opposite edge.

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

prefilter : bool, optional

Determines if the input array is prefiltered with spline_filter before interpolation. The default is True, which will create a temporary float64 array of filtered values if order > 1. If setting this to False, the output will be slightly blurred if order > 1, unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original input.

Returns:
map_coordinates : ndarray

The result of transforming the input. The shape of the output is derived from that of coordinates by dropping the first axis.

See also

spline_filter, geometric_transform, scipy.interpolate

Examples

>>> from scipy import ndimage
>>> a = np.arange(12.).reshape((4, 3))
>>> a
array([[  0.,   1.,   2.],
       [  3.,   4.,   5.],
       [  6.,   7.,   8.],
       [  9.,  10.,  11.]])
>>> ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
array([ 2.,  7.])

Above, the interpolated value of a[0.5, 0.5] gives output[0], while a[2, 1] is output[1].

>>> inds = np.array([[0.5, 2], [0.5, 4]])
>>> ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
array([  2. , -33.3])
>>> ndimage.map_coordinates(a, inds, order=1, mode='nearest')
array([ 2.,  8.])
>>> ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
array([ True, False], dtype=bool)

multi_voxel_fit

dipy.reconst.dsi.multi_voxel_fit(single_voxel_fit)

Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition

pdf_interp_coords

dipy.reconst.dsi.pdf_interp_coords(sphere, rradius, origin)

Precompute coordinates for ODF calculation from the PDF

Parameters:
sphere : object,

Sphere

rradius : array, shape (N,)

line interpolation points

origin : array, shape (3,)

center of the grid

pdf_odf

dipy.reconst.dsi.pdf_odf(Pr, rradius, interp_coords)

Calculates the real ODF from the diffusion propagator(PDF) Pr

Parameters:
Pr : array, shape (X, X, X)

probability density function

rradius : array, shape (N,)

interpolation range on the radius

interp_coords : array, shape (3, M, N)

coordinates in the pdf for interpolating the odf

project_hemisph_bvecs

dipy.reconst.dsi.project_hemisph_bvecs(gtab)

Project any near identical bvecs to the other hemisphere

Parameters:
gtab : object,

GradientTable

Notes

Useful only when working with some types of dsi data.

threshold_propagator

dipy.reconst.dsi.threshold_propagator(P, estimated_snr=15.0)

Applies hard threshold on the propagator to remove background noise for the deconvolution.

ReconstModel

class dipy.reconst.dti.ReconstModel(gtab)

Bases: object

Abstract class for signal reconstruction models

Methods

fit  
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data, mask=None, **kwargs)

TensorFit

class dipy.reconst.dti.TensorFit(model, model_params, model_S0=None)

Bases: object

Attributes:
S0_hat
directions

For tracking - return the primary direction in each voxel

evals

Returns the eigenvalues of the tensor as an array

evecs

Returns the eigenvectors of the tensor as an array, columnwise

quadratic_form

Calculates the 3x3 diffusion tensor for each voxel

shape

Methods

ad() Axial diffusivity (AD) calculated from cached eigenvalues.
adc(sphere) Calculate the apparent diffusion coefficient (ADC) in each direction on
color_fa() Color fractional anisotropy of diffusion tensor
fa() Fractional anisotropy (FA) calculated from cached eigenvalues.
ga() Geodesic anisotropy (GA) calculated from cached eigenvalues.
linearity()
Returns:
md() Mean diffusivity (MD) calculated from cached eigenvalues.
mode() Tensor mode calculated from cached eigenvalues.
odf(sphere) The diffusion orientation distribution function (dODF).
planarity()
Returns:
predict(gtab[, S0, step]) Given a model fit, predict the signal on the vertices of a sphere
rd() Radial diffusivity (RD) calculated from cached eigenvalues.
sphericity()
Returns:
trace() Trace of the tensor calculated from cached eigenvalues.
lower_triangular  
__init__(model, model_params, model_S0=None)

Initialize a TensorFit class instance.

S0_hat
ad()

Axial diffusivity (AD) calculated from cached eigenvalues.

Returns:
ad : array (V, 1)

Calculated AD.

Notes

RD is calculated with the following equation:

\[AD = \lambda_1\]
adc(sphere)
Calculate the apparent diffusion coefficient (ADC) in each direction on the sphere for each voxel in the data
Parameters:
sphere : Sphere class instance
Returns:
adc : ndarray

The estimates of the apparent diffusion coefficient in every direction on the input sphere

ec{b} Q ec{b}^T

Where Q is the quadratic form of the tensor.
color_fa()

Color fractional anisotropy of diffusion tensor

directions

For tracking - return the primary direction in each voxel

evals

Returns the eigenvalues of the tensor as an array

evecs

Returns the eigenvectors of the tensor as an array, columnwise

fa()

Fractional anisotropy (FA) calculated from cached eigenvalues.

ga()

Geodesic anisotropy (GA) calculated from cached eigenvalues.

linearity()
Returns:
linearity : array

Calculated linearity of the diffusion tensor [1].

Notes

Linearity is calculated with the following equation:

\[Linearity = \frac{\lambda_1-\lambda_2}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz
F., “Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.
lower_triangular(b0=None)
md()

Mean diffusivity (MD) calculated from cached eigenvalues.

Returns:
md : array (V, 1)

Calculated MD.

Notes

MD is calculated with the following equation:

\[MD = \frac{\lambda_1+\lambda_2+\lambda_3}{3}\]
mode()

Tensor mode calculated from cached eigenvalues.

odf(sphere)

The diffusion orientation distribution function (dODF). This is an estimate of the diffusion distance in each direction

Parameters:
sphere : Sphere class instance.

The dODF is calculated in the vertices of this input.

Returns:
odf : ndarray

The diffusion distance in every direction of the sphere in every voxel in the input data.

Notes

This is based on equation 3 in [Aganj2010]. To re-derive it from scratch, follow steps in [Descoteaux2008], Section 7.9 Equation 7.24 but with an \(r^2\) term in the integral.

References

[Aganj2010](1, 2) Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., & Harel, N. (2010). Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magnetic Resonance in Medicine, 64(2), 554-566. doi:DOI: 10.1002/mrm.22365
[Descoteaux2008](1, 2) Descoteaux, M. (2008). PhD Thesis: High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation and Tractography. ftp://ftp-sop.inria.fr/athena/Publications/PhDs/descoteaux_thesis.pdf
planarity()
Returns:
sphericity : array

Calculated sphericity of the diffusion tensor [1].

Notes

Sphericity is calculated with the following equation:

\[Sphericity = \frac{2 (\lambda_2 - \lambda_3)}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz
F., “Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.
predict(gtab, S0=None, step=None)

Given a model fit, predict the signal on the vertices of a sphere

Parameters:
gtab : a GradientTable class instance

This encodes the directions for which a prediction is made

S0 : float array

The mean non-diffusion weighted signal in each voxel. Default: The fitted S0 value in all voxels if it was fitted. Otherwise 1 in all voxels.

step : int

The chunk size as a number of voxels. Optional parameter with default value 10,000.

In order to increase speed of processing, tensor fitting is done simultaneously over many voxels. This parameter sets the number of voxels that will be fit at once in each iteration. A larger step value should speed things up, but it will also take up more memory. It is advisable to keep an eye on memory consumption as this value is increased.

Notes

The predicted signal is given by:

\[S( heta, b) = S_0 * e^{-b ADC}\]

Where: .. math

ADC =       heta Q  heta^T

:math:` heta` is a unit vector pointing at any direction on the sphere for which a signal is to be predicted and \(b\) is the b value provided in the GradientTable input for that direction

quadratic_form

Calculates the 3x3 diffusion tensor for each voxel

rd()

Radial diffusivity (RD) calculated from cached eigenvalues.

Returns:
rd : array (V, 1)

Calculated RD.

Notes

RD is calculated with the following equation:

\[RD = \frac{\lambda_2 + \lambda_3}{2}\]
shape
sphericity()
Returns:
sphericity : array

Calculated sphericity of the diffusion tensor [1].

Notes

Sphericity is calculated with the following equation:

\[Sphericity = \frac{3 \lambda_3}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz
F., “Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.
trace()

Trace of the tensor calculated from cached eigenvalues.

Returns:
trace : array (V, 1)

Calculated trace.

Notes

The trace is calculated with the following equation:

\[trace = \lambda_1 + \lambda_2 + \lambda_3\]

TensorModel

class dipy.reconst.dti.TensorModel(gtab, fit_method='WLS', return_S0_hat=False, *args, **kwargs)

Bases: dipy.reconst.base.ReconstModel

Diffusion Tensor

Methods

fit(data[, mask]) Fit method of the DTI model class
predict(dti_params[, S0]) Predict a signal for this TensorModel class instance given parameters.
__init__(gtab, fit_method='WLS', return_S0_hat=False, *args, **kwargs)

A Diffusion Tensor Model [1], [2].

Parameters:
gtab : GradientTable class instance
fit_method : str or callable

str can be one of the following:

‘WLS’ for weighted least squares

dti.wls_fit_tensor()

‘LS’ or ‘OLS’ for ordinary least squares

dti.ols_fit_tensor()

‘NLLS’ for non-linear least-squares

dti.nlls_fit_tensor()

‘RT’ or ‘restore’ or ‘RESTORE’ for RESTORE robust tensor

fitting [3] dti.restore_fit_tensor()

callable has to have the signature:

fit_method(design_matrix, data, *args, **kwargs)

return_S0_hat : bool

Boolean to return (True) or not (False) the S0 values for the fit.

args, kwargs : arguments and key-word arguments passed to the

fit_method. See dti.wls_fit_tensor, dti.ols_fit_tensor for details

min_signal : float

The minimum signal value. Needs to be a strictly positive number. Default: minimal signal in the data provided to fit.

Notes

In order to increase speed of processing, tensor fitting is done simultaneously over many voxels. Many fit_methods use the ‘step’ parameter to set the number of voxels that will be fit at once in each iteration. This is the chunk size as a number of voxels. A larger step value should speed things up, but it will also take up more memory. It is advisable to keep an eye on memory consumption as this value is increased.

Example : In iter_fit_tensor() we have a default step value of 1e4

References

[1](1, 2) Basser, P.J., Mattiello, J., LeBihan, D., 1994. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103, 247-254.
[2](1, 2) Basser, P., Pierpaoli, C., 1996. Microstructural and physiological features of tissues elucidated by quantitative diffusion-tensor MRI. Journal of Magnetic Resonance 111, 209-219.
[3](1, 2) Lin-Ching C., Jones D.K., Pierpaoli, C. 2005. RESTORE: Robust estimation of tensors by outlier rejection. MRM 53: 1088-1095
fit(data, mask=None)

Fit method of the DTI model class

Parameters:
data : array

The measured signal from one voxel.

mask : array

A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[:-1]

predict(dti_params, S0=1.0)

Predict a signal for this TensorModel class instance given parameters.

Parameters:
dti_params : ndarray

The last dimension should have 12 tensor parameters: 3 eigenvalues, followed by the 3 eigenvectors

S0 : float or ndarray

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

range

class dipy.reconst.dti.range(stop) → range object

Bases: object

range(start, stop[, step]) -> range object

Return an object that produces a sequence of integers from start (inclusive) to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, …, j-1. start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3. These are exactly the valid indices for a list of 4 elements. When step is given, it specifies the increment (or decrement).

Attributes:
start
step
stop

Methods

count(value)
index(value, [start, [stop]]) Raise ValueError if the value is not present.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

count(value) → integer -- return number of occurrences of value
index(value[, start[, stop]]) → integer -- return index of value.

Raise ValueError if the value is not present.

start
step
stop

apparent_diffusion_coef

dipy.reconst.dti.apparent_diffusion_coef(q_form, sphere)
Calculate the apparent diffusion coefficient (ADC) in each direction of a sphere.
Parameters:
q_form : ndarray

The quadratic form of a tensor, or an array with quadratic forms of tensors. Should be of shape (…, 3, 3)

sphere : a Sphere class instance

The ADC will be calculated for each of the vertices in the sphere

ec{b} Q ec{b}^T

Where Q is the quadratic form of the tensor.

auto_attr

dipy.reconst.dti.auto_attr(func)

Decorator to create OneTimeProperty attributes.

Parameters:
func : method

The method that will be called the first time to compute a value. Afterwards, the method’s name will be a standard attribute holding the value of this computation.

Examples

>>> class MagicProp(object):
...     @auto_attr
...     def a(self):
...         return 99
...
>>> x = MagicProp()
>>> 'a' in x.__dict__
False
>>> x.a
99
>>> 'a' in x.__dict__
True

axial_diffusivity

dipy.reconst.dti.axial_diffusivity(evals, axis=-1)

Axial Diffusivity (AD) of a diffusion tensor. Also called parallel diffusivity.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor, must be sorted in descending order along axis.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
ad : array

Calculated AD.

Notes

AD is calculated with the following equation:

\[AD = \lambda_1\]

color_fa

dipy.reconst.dti.color_fa(fa, evecs)

Color fractional anisotropy of diffusion tensor

Parameters:
fa : array-like

Array of the fractional anisotropy (can be 1D, 2D or 3D)

evecs : array-like

eigen vectors from the tensor model

Returns:
rgb : Array with 3 channels for each color as the last dimension.

Colormap of the FA with red for the x value, y for the green value and z for the blue value.

ec{e})) imes fa

decompose_tensor

dipy.reconst.dti.decompose_tensor(tensor, min_diffusivity=0)

Returns eigenvalues and eigenvectors given a diffusion tensor

Computes tensor eigen decomposition to calculate eigenvalues and eigenvectors (Basser et al., 1994a).

Parameters:
tensor : array (…, 3, 3)

Hermitian matrix representing a diffusion tensor.

min_diffusivity : float

Because negative eigenvalues are not physical and small eigenvalues, much smaller than the diffusion weighting, cause quite a lot of noise in metrics such as fa, diffusivity values smaller than min_diffusivity are replaced with min_diffusivity.

Returns:
eigvals : array (…, 3)

Eigenvalues from eigen decomposition of the tensor. Negative eigenvalues are replaced by zero. Sorted from largest to smallest.

eigvecs : array (…, 3, 3)

Associated eigenvectors from eigen decomposition of the tensor. Eigenvectors are columnar (e.g. eigvecs[…, :, j] is associated with eigvals[…, j])

design_matrix

dipy.reconst.dti.design_matrix(gtab, dtype=None)

Constructs design matrix for DTI weighted least squares or least squares fitting. (Basser et al., 1994a)

Parameters:
gtab : A GradientTable class instance
dtype : string

Parameter to control the dtype of returned designed matrix

Returns:
design_matrix : array (g,7)

Design matrix or B matrix assuming Gaussian distributed tensor model design_matrix[j, :] = (Bxx, Byy, Bzz, Bxy, Bxz, Byz, dummy)

determinant

dipy.reconst.dti.determinant(q_form)

The determinant of a tensor, given in quadratic form

Parameters:
q_form : ndarray

The quadratic form of a tensor, or an array with quadratic forms of tensors. Should be of shape (x, y, z, 3, 3) or (n, 3, 3) or (3, 3).

Returns:
det : array

The determinant of the tensor in each spatial coordinate

deviatoric

dipy.reconst.dti.deviatoric(q_form)

Calculate the deviatoric (anisotropic) part of the tensor [1].

Parameters:
q_form : ndarray

The quadratic form of a tensor, or an array with quadratic forms of tensors. Should be of shape (x,y,z,3,3) or (n, 3, 3) or (3,3).

Returns:
A_squiggle : ndarray

The deviatoric part of the tensor in each spatial coordinate.

Notes

The deviatoric part of the tensor is defined as (equations 3-5 in [1]):

\[\widetilde{A} = A - \bar{A}\]

Where \(A\) is the tensor quadratic form and \(\bar{A}\) is the anisotropic part of the tensor.

References

[1](1, 2, 3, 4) Daniel B. Ennis and G. Kindlmann, “Orthogonal Tensor Invariants and the Analysis of Diffusion Tensor Magnetic Resonance Images”, Magnetic Resonance in Medicine, vol. 55, no. 1, pp. 136-146, 2006.

eig_from_lo_tri

dipy.reconst.dti.eig_from_lo_tri(data, min_diffusivity=0)

Calculates tensor eigenvalues/eigenvectors from an array containing the lower diagonal form of the six unique tensor elements.

Parameters:
data : array_like (…, 6)

diffusion tensors elements stored in lower triangular order

min_diffusivity : float

See decompose_tensor()

Returns:
dti_params : array (…, 12)

Eigen-values and eigen-vectors of the same array.

eigh

dipy.reconst.dti.eigh(a, UPLO='L')

Iterate over np.linalg.eigh if it doesn’t support vectorized operation

Parameters:
a : array_like (…, M, M)

Hermitian/Symmetric matrices whose eigenvalues and eigenvectors are to be computed.

UPLO : {‘L’, ‘U’}, optional

Specifies whether the calculation is done with the lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).

Returns:
w : ndarray (…, M)

The eigenvalues in ascending order, each repeated according to its multiplicity.

v : ndarray (…, M, M)

The column v[..., :, i] is the normalized eigenvector corresponding to the eigenvalue w[..., i].

Raises:
LinAlgError

If the eigenvalue computation does not converge.

See also

np.linalg.eigh

fractional_anisotropy

dipy.reconst.dti.fractional_anisotropy(evals, axis=-1)

Fractional anisotropy (FA) of a diffusion tensor.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
fa : array

Calculated FA. Range is 0 <= FA <= 1.

Notes

FA is calculated using the following equation:

\[FA = \sqrt{\frac{1}{2}\frac{(\lambda_1-\lambda_2)^2+(\lambda_1- \lambda_3)^2+(\lambda_2-\lambda_3)^2}{\lambda_1^2+ \lambda_2^2+\lambda_3^2}}\]

from_lower_triangular

dipy.reconst.dti.from_lower_triangular(D)

Returns a tensor given the six unique tensor elements

Given the six unique tensor elements (in the order: Dxx, Dxy, Dyy, Dxz, Dyz, Dzz) returns a 3 by 3 tensor. All elements after the sixth are ignored.

Parameters:
D : array_like, (…, >6)

Unique elements of the tensors

Returns:
tensor : ndarray (…, 3, 3)

3 by 3 tensors

geodesic_anisotropy

dipy.reconst.dti.geodesic_anisotropy(evals, axis=-1)

Geodesic anisotropy (GA) of a diffusion tensor.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
ga : array

Calculated GA. In the range 0 to +infinity

Notes

GA is calculated using the following equation given in [1]:

\[GA = \sqrt{\sum_{i=1}^3 \log^2{\left ( \lambda_i/<\mathbf{D}> \right )}}, \quad \textrm{where} \quad <\mathbf{D}> = (\lambda_1\lambda_2\lambda_3)^{1/3}\]

Note that the notation, \(<D>\), is often used as the mean diffusivity (MD) of the diffusion tensor and can lead to confusions in the literature (see [1] versus [2] versus [3] for example). Reference [2] defines geodesic anisotropy (GA) with \(<D>\) as the MD in the denominator of the sum. This is wrong. The original paper [1] defines GA with \(<D> = det(D)^{1/3}\), as the isotropic part of the distance. This might be an explanation for the confusion. The isotropic part of the diffusion tensor in Euclidean space is the MD whereas the isotropic part of the tensor in log-Euclidean space is \(det(D)^{1/3}\). The Appendix of [1] and log-Euclidean derivations from [3] are clear on this. Hence, all that to say that \(<D> = det(D)^{1/3}\) here for the GA definition and not MD.

References

[1](1, 2, 3, 4, 5) P. G. Batchelor, M. Moakher, D. Atkinson, F. Calamante, A. Connelly, “A rigorous framework for diffusion tensor calculus”, Magnetic Resonance in Medicine, vol. 53, pp. 221-225, 2005.
[2](1, 2, 3) M. M. Correia, V. F. Newcombe, G.B. Williams. “Contrast-to-noise ratios for indices of anisotropy obtained from diffusion MRI: a study with standard clinical b-values at 3T”. NeuroImage, vol. 57, pp. 1103-1115, 2011.
[3](1, 2, 3) A. D. Lee, etal, P. M. Thompson. “Comparison of fractional and geodesic anisotropy in diffusion tensor images of 90 monozygotic and dizygotic twins”. 5th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 943-946, May 2008.
[4]V. Arsigny, P. Fillard, X. Pennec, N. Ayache. “Log-Euclidean metrics for fast and simple calculus on diffusion tensors.” Magnetic Resonance in Medecine, vol 56, pp. 411-421, 2006.

get_sphere

dipy.reconst.dti.get_sphere(name='symmetric362')

provide triangulated spheres

Parameters:
name : str

which sphere - one of: * ‘symmetric362’ * ‘symmetric642’ * ‘symmetric724’ * ‘repulsion724’ * ‘repulsion100’ * ‘repulsion200’

Returns:
sphere : a dipy.core.sphere.Sphere class instance

Examples

>>> import numpy as np
>>> from dipy.data import get_sphere
>>> sphere = get_sphere('symmetric362')
>>> verts, faces = sphere.vertices, sphere.faces
>>> verts.shape == (362, 3)
True
>>> faces.shape == (720, 3)
True
>>> verts, faces = get_sphere('not a sphere name') 
Traceback (most recent call last):
    ...
DataError: No sphere called "not a sphere name"

gradient_table

dipy.reconst.dti.gradient_table(bvals, bvecs=None, big_delta=None, small_delta=None, b0_threshold=50, atol=0.01)

A general function for creating diffusion MR gradients.

It reads, loads and prepares scanner parameters like the b-values and b-vectors so that they can be useful during the reconstruction process.

Parameters:
bvals : can be any of the four options
  1. an array of shape (N,) or (1, N) or (N, 1) with the b-values.
  2. a path for the file which contains an array like the above (1).
  3. an array of shape (N, 4) or (4, N). Then this parameter is considered to be a b-table which contains both bvals and bvecs. In this case the next parameter is skipped.
  4. a path for the file which contains an array like the one at (3).
bvecs : can be any of two options
  1. an array of shape (N, 3) or (3, N) with the b-vectors.
  2. a path for the file which contains an array like the previous.
big_delta : float

acquisition pulse separation time in seconds (default None)

small_delta : float

acquisition pulse duration time in seconds (default None)

b0_threshold : float

All b-values with values less than or equal to bo_threshold are considered as b0s i.e. without diffusion weighting.

atol : float

All b-vectors need to be unit vectors up to a tolerance.

Returns:
gradients : GradientTable

A GradientTable with all the gradient information.

Notes

  1. Often b0s (b-values which correspond to images without diffusion weighting) have 0 values however in some cases the scanner cannot provide b0s of an exact 0 value and it gives a bit higher values e.g. 6 or 12. This is the purpose of the b0_threshold in the __init__.
  2. We assume that the minimum number of b-values is 7.
  3. B-vectors should be unit vectors.

Examples

>>> from dipy.core.gradients import gradient_table
>>> bvals = 1500 * np.ones(7)
>>> bvals[0] = 0
>>> sq2 = np.sqrt(2) / 2
>>> bvecs = np.array([[0, 0, 0],
...                   [1, 0, 0],
...                   [0, 1, 0],
...                   [0, 0, 1],
...                   [sq2, sq2, 0],
...                   [sq2, 0, sq2],
...                   [0, sq2, sq2]])
>>> gt = gradient_table(bvals, bvecs)
>>> gt.bvecs.shape == bvecs.shape
True
>>> gt = gradient_table(bvals, bvecs.T)
>>> gt.bvecs.shape == bvecs.T.shape
False

isotropic

dipy.reconst.dti.isotropic(q_form)
Calculate the isotropic part of the tensor [Rd0568a744381-1].
Parameters:
q_form : ndarray

The quadratic form of a tensor, or an array with quadratic forms of tensors. Should be of shape (x,y,z,3,3) or (n, 3, 3) or (3,3).

Returns:
A_hat: ndarray

The isotropic part of the tensor in each spatial coordinate

rac{1}{2} tr(A) I

iter_fit_tensor

dipy.reconst.dti.iter_fit_tensor(step=10000.0)

Wrap a fit_tensor func and iterate over chunks of data with given length

Splits data into a number of chunks of specified size and iterates the decorated fit_tensor function over them. This is useful to counteract the temporary but significant memory usage increase in fit_tensor functions that use vectorized operations and need to store large temporary arrays for their vectorized operations.

Parameters:
step : int

The chunk size as a number of voxels. Optional parameter with default value 10,000.

In order to increase speed of processing, tensor fitting is done simultaneously over many voxels. This parameter sets the number of voxels that will be fit at once in each iteration. A larger step value should speed things up, but it will also take up more memory. It is advisable to keep an eye on memory consumption as this value is increased.

linearity

dipy.reconst.dti.linearity(evals, axis=-1)

The linearity of the tensor [1]

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
linearity : array

Calculated linearity of the diffusion tensor.

Notes

Linearity is calculated with the following equation:

\[Linearity = \frac{\lambda_1-\lambda_2}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz F.,
“Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.

lower_triangular

dipy.reconst.dti.lower_triangular(tensor, b0=None)

Returns the six lower triangular values of the tensor and a dummy variable if b0 is not None

Parameters:
tensor : array_like (…, 3, 3)

a collection of 3, 3 diffusion tensors

b0 : float

if b0 is not none log(b0) is returned as the dummy variable

Returns:
D : ndarray

If b0 is none, then the shape will be (…, 6) otherwise (…, 7)

mean_diffusivity

dipy.reconst.dti.mean_diffusivity(evals, axis=-1)

Mean Diffusivity (MD) of a diffusion tensor.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
md : array

Calculated MD.

Notes

MD is calculated with the following equation:

\[MD = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}\]

mode

dipy.reconst.dti.mode(q_form)

Mode (MO) of a diffusion tensor [1].

Parameters:
q_form : ndarray

The quadratic form of a tensor, or an array with quadratic forms of tensors. Should be of shape (x, y, z, 3, 3) or (n, 3, 3) or (3, 3).

Returns:
mode : array

Calculated tensor mode in each spatial coordinate.

Notes

Mode ranges between -1 (planar anisotropy) and +1 (linear anisotropy) with 0 representing orthotropy. Mode is calculated with the following equation (equation 9 in [1]):

\[Mode = 3*\sqrt{6}*det(\widetilde{A}/norm(\widetilde{A}))\]

Where \(\widetilde{A}\) is the deviatoric part of the tensor quadratic form.

References

[1](1, 2, 3, 4) Daniel B. Ennis and G. Kindlmann, “Orthogonal Tensor Invariants and the Analysis of Diffusion Tensor Magnetic Resonance Images”, Magnetic Resonance in Medicine, vol. 55, no. 1, pp. 136-146, 2006.

nlls_fit_tensor

dipy.reconst.dti.nlls_fit_tensor(design_matrix, data, weighting=None, sigma=None, jac=True, return_S0_hat=False)

Fit the tensor params using non-linear least-squares.

Parameters:
design_matrix : array (g, 7)

Design matrix holding the covariants used to solve for the regression coefficients.

data : array ([X, Y, Z, …], g)

Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data.

weighting: str

the weighting scheme to use in considering the squared-error. Default behavior is to use uniform weighting. Other options: ‘sigma’ ‘gmm’

sigma: float

If the ‘sigma’ weighting scheme is used, a value of sigma needs to be provided here. According to [Chang2005], a good value to use is 1.5267 * std(background_noise), where background_noise is estimated from some part of the image known to contain no signal (only noise).

jac : bool

Use the Jacobian? Default: True

return_S0_hat : bool

Boolean to return (True) or not (False) the S0 values for the fit.

Returns:
nlls_params: the eigen-values and eigen-vectors of the tensor in each

voxel.

norm

dipy.reconst.dti.norm(q_form)

Calculate the Frobenius norm of a tensor quadratic form

Parameters:
q_form: ndarray

The quadratic form of a tensor, or an array with quadratic forms of tensors. Should be of shape (x,y,z,3,3) or (n, 3, 3) or (3,3).

Returns:
norm : ndarray

The Frobenius norm of the 3,3 tensor q_form in each spatial coordinate.

See also

np.linalg.norm

Notes

The Frobenius norm is defined as:

Math:||A||_F = [sum_{i,j} abs(a_{i,j})^2]^{1/2}

ols_fit_tensor

dipy.reconst.dti.ols_fit_tensor(design_matrix, data, return_S0_hat=False)

Computes ordinary least squares (OLS) fit to calculate self-diffusion tensor using a linear regression model [1].

Parameters:
design_matrix : array (g, 7)

Design matrix holding the covariants used to solve for the regression coefficients.

data : array ([X, Y, Z, …], g)

Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data.

return_S0_hat : bool

Boolean to return (True) or not (False) the S0 values for the fit.

Returns:
eigvals : array (…, 3)

Eigenvalues from eigen decomposition of the tensor.

eigvecs : array (…, 3, 3)

Associated eigenvectors from eigen decomposition of the tensor. Eigenvectors are columnar (e.g. eigvecs[:,j] is associated with eigvals[j])

See also

WLS_fit_tensor, decompose_tensor, design_matrix

Notes

\[ \begin{align}\begin{aligned}\begin{split}y = \mathrm{data} \\ X = \mathrm{design matrix} \\\end{split}\\\hat{\beta}_\mathrm{OLS} = (X^T X)^{-1} X^T y\end{aligned}\end{align} \]

References

[1](1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28) Chung, SW., Lu, Y., Henry, R.G., 2006. Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33, 531-541.

pinv

dipy.reconst.dti.pinv(a, rcond=1e-15)

Vectorized version of numpy.linalg.pinv

If numpy version is less than 1.8, it falls back to iterating over np.linalg.pinv since there isn’t a vectorized version of np.linalg.svd available.

Parameters:
a : array_like (…, M, N)

Matrix to be pseudo-inverted.

rcond : float

Cutoff for small singular values.

Returns:
B : ndarray (…, N, M)

The pseudo-inverse of a.

Raises:
LinAlgError

If the SVD computation does not converge.

See also

np.linalg.pinv

planarity

dipy.reconst.dti.planarity(evals, axis=-1)

The planarity of the tensor [1]

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
linearity : array

Calculated linearity of the diffusion tensor.

Notes

Planarity is calculated with the following equation:

\[Planarity = \frac{2 (\lambda_2-\lambda_3)}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz F.,
“Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.

quantize_evecs

dipy.reconst.dti.quantize_evecs(evecs, odf_vertices=None)

Find the closest orientation of an evenly distributed sphere

Parameters:
evecs : ndarray
odf_vertices : None or ndarray

If None, then set vertices from symmetric362 sphere. Otherwise use passed ndarray as vertices

Returns:
IN : ndarray

radial_diffusivity

dipy.reconst.dti.radial_diffusivity(evals, axis=-1)

Radial Diffusivity (RD) of a diffusion tensor. Also called perpendicular diffusivity.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor, must be sorted in descending order along axis.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
rd : array

Calculated RD.

Notes

RD is calculated with the following equation:

\[RD = \frac{\lambda_2 + \lambda_3}{2}\]

restore_fit_tensor

dipy.reconst.dti.restore_fit_tensor(design_matrix, data, sigma=None, jac=True, return_S0_hat=False)

Use the RESTORE algorithm [Chang2005] to calculate a robust tensor fit

Parameters:
design_matrix : array of shape (g, 7)

Design matrix holding the covariants used to solve for the regression coefficients.

data : array of shape ([X, Y, Z, n_directions], g)

Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data.

sigma : float

An estimate of the variance. [Chang2005] recommend to use 1.5267 * std(background_noise), where background_noise is estimated from some part of the image known to contain no signal (only noise).

jac : bool, optional

Whether to use the Jacobian of the tensor to speed the non-linear optimization procedure used to fit the tensor parameters (see also nlls_fit_tensor()). Default: True

return_S0_hat : bool

Boolean to return (True) or not (False) the S0 values for the fit.

Returns:
restore_params : an estimate of the tensor parameters in each voxel.

References

Chang, L-C, Jones, DK and Pierpaoli, C (2005). RESTORE: robust estimation of tensors by outlier rejection. MRM, 53: 1088-95.

sphericity

dipy.reconst.dti.sphericity(evals, axis=-1)

The sphericity of the tensor [1]

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
sphericity : array

Calculated sphericity of the diffusion tensor.

Notes

Sphericity is calculated with the following equation:

\[Sphericity = \frac{3 \lambda_3)}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz F.,
“Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.

tensor_prediction

dipy.reconst.dti.tensor_prediction(dti_params, gtab, S0)

Predict a signal given tensor parameters.

Parameters:
dti_params : ndarray

Tensor parameters. The last dimension should have 12 tensor parameters: 3 eigenvalues, followed by the 3 corresponding eigenvectors.

gtab : a GradientTable class instance

The gradient table for this prediction

S0 : float or ndarray

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

Notes

The predicted signal is given by: \(S( heta, b) = S_0 * e^{-b ADC}\), where \(ADC = heta Q heta^T\), :math:` heta` is a unit vector pointing at any direction on the sphere for which a signal is to be predicted, \(b\) is the b value provided in the GradientTable input for that direction, \(Q\) is the quadratic form of the tensor determined by the input parameters.

trace

dipy.reconst.dti.trace(evals, axis=-1)

Trace of a diffusion tensor.

Parameters:
evals : array-like

Eigenvalues of a diffusion tensor.

axis : int

Axis of evals which contains 3 eigenvalues.

Returns:
trace : array

Calculated trace of the diffusion tensor.

Notes

Trace is calculated with the following equation:

\[Trace = \lambda_1 + \lambda_2 + \lambda_3\]

vec_val_vect

dipy.reconst.dti.vec_val_vect()

Vectorize vecs.diag(vals).`vecs`.T for last 2 dimensions of vecs

Parameters:
vecs : shape (…, M, N) array

containing tensor in last two dimensions; M, N usually equal to (3, 3)

vals : shape (…, N) array

diagonal values carried in last dimension, ... shape above must match that for vecs

Returns:
res : shape (…, M, M) array

For all the dimensions ellided by ..., loops to get (M, N) vec matrix, and (N,) vals vector, and calculates vec.dot(np.diag(val).dot(vec.T).

Raises:
ValueError : non-matching ... dimensions of vecs, vals
ValueError : non-matching N dimensions of vecs, vals

Examples

Make a 3D array where the first dimension is only 1

>>> vecs = np.arange(9).reshape((1, 3, 3))
>>> vals = np.arange(3).reshape((1, 3))
>>> vec_val_vect(vecs, vals)
array([[[   9.,   24.,   39.],
        [  24.,   66.,  108.],
        [  39.,  108.,  177.]]])

That’s the same as the 2D case (apart from the float casting):

>>> vecs = np.arange(9).reshape((3, 3))
>>> vals = np.arange(3)
>>> np.dot(vecs, np.dot(np.diag(vals), vecs.T))
array([[  9,  24,  39],
       [ 24,  66, 108],
       [ 39, 108, 177]])

vector_norm

dipy.reconst.dti.vector_norm(vec, axis=-1, keepdims=False)

Return vector Euclidean (L2) norm

See unit vector and Euclidean norm

Parameters:
vec : array_like

Vectors to norm.

axis : int

Axis over which to norm. By default norm over last axis. If axis is None, vec is flattened then normed.

keepdims : bool

If True, the output will have the same number of dimensions as vec, with shape 1 on axis.

Returns:
norm : array

Euclidean norms of vectors.

Examples

>>> import numpy as np
>>> vec = [[8, 15, 0], [0, 36, 77]]
>>> vector_norm(vec)
array([ 17.,  85.])
>>> vector_norm(vec, keepdims=True)
array([[ 17.],
       [ 85.]])
>>> vector_norm(vec, axis=0)
array([  8.,  39.,  77.])

wls_fit_tensor

dipy.reconst.dti.wls_fit_tensor(design_matrix, data, return_S0_hat=False)

Computes weighted least squares (WLS) fit to calculate self-diffusion tensor using a linear regression model [1].

Parameters:
design_matrix : array (g, 7)

Design matrix holding the covariants used to solve for the regression coefficients.

data : array ([X, Y, Z, …], g)

Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data.

return_S0_hat : bool

Boolean to return (True) or not (False) the S0 values for the fit.

Returns:
eigvals : array (…, 3)

Eigenvalues from eigen decomposition of the tensor.

eigvecs : array (…, 3, 3)

Associated eigenvectors from eigen decomposition of the tensor. Eigenvectors are columnar (e.g. eigvecs[:,j] is associated with eigvals[j])

See also

decompose_tensor

Notes

In Chung, et al. 2006, the regression of the WLS fit needed an unbiased preliminary estimate of the weights and therefore the ordinary least squares (OLS) estimates were used. A “two pass” method was implemented:

  1. calculate OLS estimates of the data
  2. apply the OLS estimates as weights to the WLS fit of the data

This ensured heteroscedasticity could be properly modeled for various types of bootstrap resampling (namely residual bootstrap).

\[\begin{split}y = \mathrm{data} \\ X = \mathrm{design matrix} \\ \hat{\beta}_\mathrm{WLS} = \mathrm{desired regression coefficients (e.g. tensor)}\\ \\ \hat{\beta}_\mathrm{WLS} = (X^T W X)^{-1} X^T W y \\ \\ W = \mathrm{diag}((X \hat{\beta}_\mathrm{OLS})^2), \mathrm{where} \hat{\beta}_\mathrm{OLS} = (X^T X)^{-1} X^T y\end{split}\]

References

[1](1, 2, 3) Chung, SW., Lu, Y., Henry, R.G., 2006. Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33, 531-541.

Cache

class dipy.reconst.forecast.Cache

Bases: object

Cache values based on a key object (such as a sphere or gradient table).

Notes

This class is meant to be used as a mix-in:

class MyModel(Model, Cache):
    pass

class MyModelFit(Fit):
    pass

Inside a method on the fit, typical usage would be:

def odf(sphere):
    M = self.model.cache_get('odf_basis_matrix', key=sphere)

    if M is None:
        M = self._compute_basis_matrix(sphere)
        self.model.cache_set('odf_basis_matrix', key=sphere, value=M)

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

cache_clear()

Clear the cache.

cache_get(tag, key, default=None)

Retrieve a value from the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

default : object

Value to be returned if no cached entry is found.

Returns:
v : object

Value from the cache associated with (tag, key). Returns default if no cached entry is found.

cache_set(tag, key, value)

Store a value in the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

value : object

Value stored in the cache for each unique combination of (tag, key).

Examples

>>> def compute_expensive_matrix(parameters):
...     # Imagine the following computation is very expensive
...     return (p**2 for p in parameters)
>>> c = Cache()
>>> parameters = (1, 2, 3)
>>> X1 = compute_expensive_matrix(parameters)
>>> c.cache_set('expensive_matrix', parameters, X1)
>>> X2 = c.cache_get('expensive_matrix', parameters)
>>> X1 is X2
True

ForecastFit

class dipy.reconst.forecast.ForecastFit(model, data, sh_coef, d_par, d_perp)

Bases: dipy.reconst.odf.OdfFit

Attributes:
dpar

The parallel diffusivity

dperp

The perpendicular diffusivity

sh_coeff

The FORECAST SH coefficients

Methods

fractional_anisotropy() Calculates the fractional anisotropy.
mean_diffusivity() Calculates the mean diffusivity.
odf(sphere[, clip_negative]) Calculates the fODF for a given discrete sphere.
predict([gtab, S0]) Calculates the fODF for a given discrete sphere.
__init__(model, data, sh_coef, d_par, d_perp)

Calculates diffusion properties for a single voxel

Parameters:
model : object,

AnalyticalModel

data : 1d ndarray,

fitted data

sh_coef : 1d ndarray,

forecast sh coefficients

d_par : float,

parallel diffusivity

d_perp : float,

perpendicular diffusivity

dpar

The parallel diffusivity

dperp

The perpendicular diffusivity

fractional_anisotropy()

Calculates the fractional anisotropy.

mean_diffusivity()

Calculates the mean diffusivity.

odf(sphere, clip_negative=True)

Calculates the fODF for a given discrete sphere.

Parameters:
sphere : Sphere,

the odf sphere

clip_negative : boolean, optional

if True clip the negative odf values to 0, default True

predict(gtab=None, S0=1.0)

Calculates the fODF for a given discrete sphere.

Parameters:
gtab : GradientTable, optional

gradient directions and bvalues container class.

S0 : float, optional

the signal at b-value=0

sh_coeff

The FORECAST SH coefficients

ForecastModel

class dipy.reconst.forecast.ForecastModel(gtab, sh_order=8, lambda_lb=0.001, dec_alg='CSD', sphere=None, lambda_csd=1.0)

Bases: dipy.reconst.odf.OdfModel, dipy.reconst.cache.Cache

Fiber ORientation Estimated using Continuous Axially Symmetric Tensors (FORECAST) [1,2,3]_. FORECAST is a Spherical Deconvolution reconstruction model for multi-shell diffusion data which enables the calculation of a voxel adaptive response function using the Spherical Mean Tecnique (SMT) [2,3]_.

With FORECAST it is possible to calculate crossing invariant parallel diffusivity, perpendicular diffusivity, mean diffusivity, and fractional anisotropy [2]

References

[1]Anderson A. W., “Measurement of Fiber Orientation Distributions Using High Angular Resolution Diffusion Imaging”, Magnetic Resonance in Medicine, 2005.
[2](1, 2) Kaden E. et al., “Quantitative Mapping of the Per-Axon Diffusion Coefficients in Brain White Matter”, Magnetic Resonance in Medicine, 2016.
[3]Zucchelli E. et al., “A generalized SMT-based framework for Diffusion MRI microstructural model estimation”, MICCAI Workshop on Computational DIFFUSION MRI (CDMRI), 2017.

The implementation of FORECAST may require CVXPY (http://www.cvxpy.org/).

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fit method for every voxel in data
__init__(gtab, sh_order=8, lambda_lb=0.001, dec_alg='CSD', sphere=None, lambda_csd=1.0)

Analytical and continuous modeling of the diffusion signal with respect to the FORECAST basis [1,2,3]_. This implementation is a modification of the original FORECAST model presented in [1] adapted for multi-shell data as in [2,3]_ .

The main idea is to model the diffusion signal as the combination of a single fiber response function \(F(\mathbf{b})\) times the fODF \(\rho(\mathbf{v})\)

..math::
nowrap:
begin{equation}

E(mathbf{b}) = int_{mathbf{v} in mathcal{S}^2} rho(mathbf{v}) F({mathbf{b}} | mathbf{v}) d mathbf{v}

end{equation}

where \(\mathbf{b}\) is the b-vector (b-value times gradient direction) and \(\mathbf{v}\) is an unit vector representing a fiber direction.

In FORECAST \(\rho\) is modeled using real symmetric Spherical Harmonics (SH) and \(F(\mathbf(b))\) is an axially symmetric tensor.

Parameters:
gtab : GradientTable,

gradient directions and bvalues container class.

sh_order : unsigned int,

an even integer that represent the SH order of the basis (max 12)

lambda_lb: float,

Laplace-Beltrami regularization weight.

dec_alg : str,

Spherical deconvolution algorithm. The possible values are Weighted Least Squares (‘WLS’), Positivity Constraints using CVXPY (‘POS’) and the Constraint Spherical Deconvolution algorithm (‘CSD’). Default is ‘CSD’.

sphere : array, shape (N,3),

sphere points where to enforce positivity when ‘POS’ or ‘CSD’ dec_alg are selected.

lambda_csd : float,

CSD regularization weight.

References

[1](1, 2) Anderson A. W., “Measurement of Fiber Orientation Distributions Using High Angular Resolution Diffusion Imaging”, Magnetic Resonance in Medicine, 2005.
[2]Kaden E. et al., “Quantitative Mapping of the Per-Axon Diffusion Coefficients in Brain White Matter”, Magnetic Resonance in Medicine, 2016.
[3]Zucchelli M. et al., “A generalized SMT-based framework for Diffusion MRI microstructural model estimation”, MICCAI Workshop on Computational DIFFUSION MRI (CDMRI), 2017.

Examples

In this example, where the data, gradient table and sphere tessellation used for reconstruction are provided, we model the diffusion signal with respect to the FORECAST and compute the fODF, parallel and perpendicular diffusivity.

>>> from dipy.data import get_sphere, get_3shell_gtab
>>> gtab = get_3shell_gtab()
>>> from dipy.sims.voxel import MultiTensor
>>> mevals = np.array(([0.0017, 0.0003, 0.0003], 
...                    [0.0017, 0.0003, 0.0003]))
>>> angl = [(0, 0), (60, 0)]
>>> data, sticks = MultiTensor(gtab,
...                            mevals,
...                            S0=100.0,
...                            angles=angl,
...                            fractions=[50, 50],
...                            snr=None)
>>> from dipy.reconst.forecast import ForecastModel
>>> fm = ForecastModel(gtab, sh_order=6)
>>> f_fit = fm.fit(data)
>>> d_par = f_fit.dpar
>>> d_perp = f_fit.dperp
>>> sphere = get_sphere('symmetric724')
>>> fodf = f_fit.odf(sphere)
fit(data, mask=None)

Fit method for every voxel in data

OdfFit

class dipy.reconst.forecast.OdfFit(model, data)

Bases: dipy.reconst.base.ReconstFit

Methods

odf(sphere) To be implemented but specific odf models
__init__(model, data)

Initialize self. See help(type(self)) for accurate signature.

odf(sphere)

To be implemented but specific odf models

OdfModel

class dipy.reconst.forecast.OdfModel(gtab)

Bases: dipy.reconst.base.ReconstModel

An abstract class to be sub-classed by specific odf models

All odf models should provide a fit method which may take data as it’s first and only argument.

Methods

fit(data) To be implemented by specific odf models
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data)

To be implemented by specific odf models

cart2sphere

dipy.reconst.forecast.cart2sphere(x, y, z)

Return angles for Cartesian 3D coordinates x, y, and z

See doc for sphere2cart for angle conventions and derivation of the formulae.

\(0\le\theta\mathrm{(theta)}\le\pi\) and \(-\pi\le\phi\mathrm{(phi)}\le\pi\)

Parameters:
x : array_like

x coordinate in Cartesian space

y : array_like

y coordinate in Cartesian space

z : array_like

z coordinate

Returns:
r : array

radius

theta : array

inclination (polar) angle

phi : array

azimuth angle

csdeconv

dipy.reconst.forecast.csdeconv(dwsignal, X, B_reg, tau=0.1, convergence=50, P=None)

Constrained-regularized spherical deconvolution (CSD) [1]

Deconvolves the axially symmetric single fiber response function r_rh in rotational harmonics coefficients from the diffusion weighted signal in dwsignal.

Parameters:
dwsignal : array

Diffusion weighted signals to be deconvolved.

X : array

Prediction matrix which estimates diffusion weighted signals from FOD coefficients.

B_reg : array (N, B)

SH basis matrix which maps FOD coefficients to FOD values on the surface of the sphere. B_reg should be scaled to account for lambda.

tau : float

Threshold controlling the amplitude below which the corresponding fODF is assumed to be zero. Ideally, tau should be set to zero. However, to improve the stability of the algorithm, tau is set to tau*100 % of the max fODF amplitude (here, 10% by default). This is similar to peak detection where peaks below 0.1 amplitude are usually considered noise peaks. Because SDT is based on a q-ball ODF deconvolution, and not signal deconvolution, using the max instead of mean (as in CSD), is more stable.

convergence : int

Maximum number of iterations to allow the deconvolution to converge.

P : ndarray

This is an optimization to avoid computing dot(X.T, X) many times. If the same X is used many times, P can be precomputed and passed to this function.

Returns:
fodf_sh : ndarray ((sh_order + 1)*(sh_order + 2)/2,)

Spherical harmonics coefficients of the constrained-regularized fiber ODF.

num_it : int

Number of iterations in the constrained-regularization used for convergence.

Notes

This section describes how the fitting of the SH coefficients is done. Problem is to minimise per iteration:

\(F(f_n) = ||Xf_n - S||^2 + \lambda^2 ||H_{n-1} f_n||^2\)

Where \(X\) maps current FOD SH coefficients \(f_n\) to DW signals \(s\) and \(H_{n-1}\) maps FOD SH coefficients \(f_n\) to amplitudes along set of negative directions identified in previous iteration, i.e. the matrix formed by the rows of \(B_{reg}\) for which \(Hf_{n-1}<0\) where \(B_{reg}\) maps \(f_n\) to FOD amplitude on a sphere.

Solve by differentiating and setting to zero:

\(\Rightarrow \frac{\delta F}{\delta f_n} = 2X^T(Xf_n - S) + 2 \lambda^2 H_{n-1}^TH_{n-1}f_n=0\)

Or:

\((X^TX + \lambda^2 H_{n-1}^TH_{n-1})f_n = X^Ts\)

Define \(Q = X^TX + \lambda^2 H_{n-1}^TH_{n-1}\) , which by construction is a square positive definite symmetric matrix of size \(n_{SH} by n_{SH}\). If needed, positive definiteness can be enforced with a small minimum norm regulariser (helps a lot with poorly conditioned direction sets and/or superresolution):

\(Q = X^TX + (\lambda H_{n-1}^T) (\lambda H_{n-1}) + \mu I\)

Solve \(Qf_n = X^Ts\) using Cholesky decomposition:

\(Q = LL^T\)

where \(L\) is lower triangular. Then problem can be solved by back-substitution:

\(L_y = X^Ts\)

\(L^Tf_n = y\)

To speeds things up further, form \(P = X^TX + \mu I\), and update to form \(Q\) by rankn update with \(H_{n-1}\). The dipy implementation looks like:

form initially \(P = X^T X + \mu I\) and \(\lambda B_{reg}\)

for each voxel: form \(z = X^Ts\)

estimate \(f_0\) by solving \(Pf_0=z\). We use a simplified \(l_{max}=4\) solution here, but it might not make a big difference.

Then iterate until no change in rows of \(H\) used in \(H_n\)

form \(H_{n}\) given \(f_{n-1}\)

form \(Q = P + (\lambda H_{n-1}^T) (\lambda H_{n-1}\)) (this can be done by rankn update, but we currently do not use rankn update).

solve \(Qf_n = z\) using Cholesky decomposition

We’d like to thanks Donald Tournier for his help with describing and implementing this algorithm.

References

[1](1, 2, 3) Tournier, J.D., et al. NeuroImage 2007. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution.

find_signal_means

dipy.reconst.forecast.find_signal_means(b_unique, data_norm, bvals, rho, lb_matrix, w=0.001)

Calculate the mean signal for each shell.

Parameters:
b_unique : 1d ndarray,

unique b-values in a vector excluding zero

data_norm : 1d ndarray,

normalized diffusion signal

bvals : 1d ndarray,

the b-values

rho : 2d ndarray,

SH basis matrix for fitting the signal on each shell

lb_matrix : 2d ndarray,

Laplace-Beltrami regularization matrix

w : float,

weight for the Laplace-Beltrami regularization

Returns:
means : 1d ndarray

the average of the signal for each b-values

forecast_error_func

dipy.reconst.forecast.forecast_error_func(x, b_unique, E)

Calculates the difference between the mean signal calculated using the parameter vector x and the average signal E using FORECAST and SMT

forecast_matrix

dipy.reconst.forecast.forecast_matrix(sh_order, d_par, d_perp, bvals)

Compute the FORECAST radial matrix

get_sphere

dipy.reconst.forecast.get_sphere(name='symmetric362')

provide triangulated spheres

Parameters:
name : str

which sphere - one of: * ‘symmetric362’ * ‘symmetric642’ * ‘symmetric724’ * ‘repulsion724’ * ‘repulsion100’ * ‘repulsion200’

Returns:
sphere : a dipy.core.sphere.Sphere class instance

Examples

>>> import numpy as np
>>> from dipy.data import get_sphere
>>> sphere = get_sphere('symmetric362')
>>> verts, faces = sphere.vertices, sphere.faces
>>> verts.shape == (362, 3)
True
>>> faces.shape == (720, 3)
True
>>> verts, faces = get_sphere('not a sphere name') 
Traceback (most recent call last):
    ...
DataError: No sphere called "not a sphere name"

lb_forecast

dipy.reconst.forecast.lb_forecast(sh_order)

Returns the Laplace-Beltrami regularization matrix for FORECAST

leastsq

dipy.reconst.forecast.leastsq(func, x0, args=(), Dfun=None, full_output=0, col_deriv=0, ftol=1.49012e-08, xtol=1.49012e-08, gtol=0.0, maxfev=0, epsfcn=None, factor=100, diag=None)

Minimize the sum of squares of a set of equations.

x = arg min(sum(func(y)**2,axis=0))
         y
Parameters:
func : callable

should take at least one (possibly length N vector) argument and returns M floating point numbers. It must not return NaNs or fitting might fail.

x0 : ndarray

The starting estimate for the minimization.

args : tuple, optional

Any extra arguments to func are placed in this tuple.

Dfun : callable, optional

A function or method to compute the Jacobian of func with derivatives across the rows. If this is None, the Jacobian will be estimated.

full_output : bool, optional

non-zero to return all optional outputs.

col_deriv : bool, optional

non-zero to specify that the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation).

ftol : float, optional

Relative error desired in the sum of squares.

xtol : float, optional

Relative error desired in the approximate solution.

gtol : float, optional

Orthogonality desired between the function vector and the columns of the Jacobian.

maxfev : int, optional

The maximum number of calls to the function. If Dfun is provided then the default maxfev is 100*(N+1) where N is the number of elements in x0, otherwise the default maxfev is 200*(N+1).

epsfcn : float, optional

A variable used in determining a suitable step length for the forward- difference approximation of the Jacobian (for Dfun=None). Normally the actual step length will be sqrt(epsfcn)*x If epsfcn is less than the machine precision, it is assumed that the relative errors are of the order of the machine precision.

factor : float, optional

A parameter determining the initial step bound (factor * || diag * x||). Should be in interval (0.1, 100).

diag : sequence, optional

N positive entries that serve as a scale factors for the variables.

Returns:
x : ndarray

The solution (or the result of the last iteration for an unsuccessful call).

cov_x : ndarray

Uses the fjac and ipvt optional outputs to construct an estimate of the jacobian around the solution. None if a singular matrix encountered (indicates very flat curvature in some direction). This matrix must be multiplied by the residual variance to get the covariance of the parameter estimates – see curve_fit.

infodict : dict

a dictionary of optional outputs with the key s:

nfev

The number of function calls

fvec

The function evaluated at the output

fjac

A permutation of the R matrix of a QR factorization of the final approximate Jacobian matrix, stored column wise. Together with ipvt, the covariance of the estimate can be approximated.

ipvt

An integer array of length N which defines a permutation matrix, p, such that fjac*p = q*r, where r is upper triangular with diagonal elements of nonincreasing magnitude. Column j of p is column ipvt(j) of the identity matrix.

qtf

The vector (transpose(q) * fvec).

mesg : str

A string message giving information about the cause of failure.

ier : int

An integer flag. If it is equal to 1, 2, 3 or 4, the solution was found. Otherwise, the solution was not found. In either case, the optional output variable ‘mesg’ gives more information.

Notes

“leastsq” is a wrapper around MINPACK’s lmdif and lmder algorithms.

cov_x is a Jacobian approximation to the Hessian of the least squares objective function. This approximation assumes that the objective function is based on the difference between some observed target data (ydata) and a (non-linear) function of the parameters f(xdata, params)

func(params) = ydata - f(xdata, params)

so that the objective function is

  min   sum((ydata - f(xdata, params))**2, axis=0)
params

The solution, x, is always a 1D array, regardless of the shape of x0, or whether x0 is a scalar.

multi_voxel_fit

dipy.reconst.forecast.multi_voxel_fit(single_voxel_fit)

Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition

optional_package

dipy.reconst.forecast.optional_package(name, trip_msg=None)

Return package-like thing and module setup for package name

Parameters:
name : str

package name

trip_msg : None or str

message to give when someone tries to use the return package, but we could not import it, and have returned a TripWire object instead. Default message if None.

Returns:
pkg_like : module or TripWire instance

If we can import the package, return it. Otherwise return an object raising an error when accessed

have_pkg : bool

True if import for package was successful, false otherwise

module_setup : function

callable usually set as setup_module in calling namespace, to allow skipping tests.

psi_l

dipy.reconst.forecast.psi_l(l, b)

real_sph_harm

dipy.reconst.forecast.real_sph_harm(m, n, theta, phi)

Compute real spherical harmonics.

Where the real harmonic \(Y^m_n\) is defined to be:

Imag(\(Y^m_n\)) * sqrt(2) if m > 0 \(Y^0_n\) if m = 0 Real(\(Y^|m|_n\)) * sqrt(2) if m < 0

This may take scalar or array arguments. The inputs will be broadcasted against each other.

Parameters:
m : int |m| <= n

The order of the harmonic.

n : int >= 0

The degree of the harmonic.

theta : float [0, 2*pi]

The azimuthal (longitudinal) coordinate.

phi : float [0, pi]

The polar (colatitudinal) coordinate.

Returns:
y_mn : real float

The real harmonic \(Y^m_n\) sampled at theta and phi.

See also

scipy.special.sph_harm

rho_matrix

dipy.reconst.forecast.rho_matrix(sh_order, vecs)

Compute the SH matrix \(\rho\)

warn

dipy.reconst.forecast.warn()

Issue a warning, or maybe ignore it or raise an exception.

FreeWaterTensorFit

class dipy.reconst.fwdti.FreeWaterTensorFit(model, model_params)

Bases: dipy.reconst.dti.TensorFit

Class for fitting the Free Water Tensor Model

Attributes:
S0_hat
directions

For tracking - return the primary direction in each voxel

evals

Returns the eigenvalues of the tensor as an array

evecs

Returns the eigenvectors of the tensor as an array, columnwise

f

Returns the free water diffusion volume fraction f

quadratic_form

Calculates the 3x3 diffusion tensor for each voxel

shape

Methods

ad() Axial diffusivity (AD) calculated from cached eigenvalues.
adc(sphere) Calculate the apparent diffusion coefficient (ADC) in each direction on
color_fa() Color fractional anisotropy of diffusion tensor
fa() Fractional anisotropy (FA) calculated from cached eigenvalues.
ga() Geodesic anisotropy (GA) calculated from cached eigenvalues.
linearity()
Returns:
md() Mean diffusivity (MD) calculated from cached eigenvalues.
mode() Tensor mode calculated from cached eigenvalues.
odf(sphere) The diffusion orientation distribution function (dODF).
planarity()
Returns:
predict(gtab[, S0]) Given a free water tensor model fit, predict the signal on the vertices of a gradient table
rd() Radial diffusivity (RD) calculated from cached eigenvalues.
sphericity()
Returns:
trace() Trace of the tensor calculated from cached eigenvalues.
lower_triangular  
__init__(model, model_params)

Initialize a FreeWaterTensorFit class instance. Since the free water tensor model is an extension of DTI, class instance is defined as subclass of the TensorFit from dti.py

Parameters:
model : FreeWaterTensorModel Class instance

Class instance containing the free water tensor model for the fit

model_params : ndarray (x, y, z, 13) or (n, 13)

All parameters estimated from the free water tensor model. Parameters are ordered as follows:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. The volume fraction of the free water compartment
f

Returns the free water diffusion volume fraction f

predict(gtab, S0=1)

Given a free water tensor model fit, predict the signal on the vertices of a gradient table

Parameters:
gtab : a GradientTable class instance

The gradient table for this prediction

S0 : float array

The mean non-diffusion weighted signal in each voxel. Default: 1 in all voxels.

Returns:
S : (…, N) ndarray

Simulated signal based on the free water DTI model

FreeWaterTensorModel

class dipy.reconst.fwdti.FreeWaterTensorModel(gtab, fit_method='NLS', *args, **kwargs)

Bases: dipy.reconst.base.ReconstModel

Class for the Free Water Elimination Diffusion Tensor Model

Methods

fit(data[, mask]) Fit method for every voxel in data
predict(fwdti_params[, S0]) Predict a signal for this TensorModel class instance given parameters.
__init__(gtab, fit_method='NLS', *args, **kwargs)

Free Water Diffusion Tensor Model [1].

Parameters:
gtab : GradientTable class instance
fit_method : str or callable

str can be one of the following:

‘WLS’ for weighted linear least square fit according to [1]

fwdti.wls_iter()

‘NLS’ for non-linear least square fit according to [1]

fwdti.nls_iter()

callable has to have the signature:

fit_method(design_matrix, data, *args, **kwargs)

args, kwargs : arguments and key-word arguments passed to the

fit_method. See fwdti.wls_iter, fwdti.nls_iter for details

References

[1](1, 2, 3, 4) Hoy, A.R., Koay, C.G., Kecskemeti, S.R., Alexander, A.L., 2014. Optimization of a free water elimination two-compartmental model for diffusion tensor imaging. NeuroImage 103, 323-333. doi: 10.1016/j.neuroimage.2014.09.053
fit(data, mask=None)

Fit method for every voxel in data

predict(fwdti_params, S0=1)

Predict a signal for this TensorModel class instance given parameters.

Parameters:
fwdti_params : (…, 13) ndarray

The last dimension should have 13 parameters: the 12 tensor parameters (3 eigenvalues, followed by the 3 corresponding eigenvectors) and the free water volume fraction.

S0 : float or ndarray

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

Returns:
S : (…, N) ndarray

Simulated signal based on the free water DTI model

ReconstModel

class dipy.reconst.fwdti.ReconstModel(gtab)

Bases: object

Abstract class for signal reconstruction models

Methods

fit  
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data, mask=None, **kwargs)

TensorFit

class dipy.reconst.fwdti.TensorFit(model, model_params, model_S0=None)

Bases: object

Attributes:
S0_hat
directions

For tracking - return the primary direction in each voxel

evals

Returns the eigenvalues of the tensor as an array

evecs

Returns the eigenvectors of the tensor as an array, columnwise

quadratic_form

Calculates the 3x3 diffusion tensor for each voxel

shape

Methods

ad() Axial diffusivity (AD) calculated from cached eigenvalues.
adc(sphere) Calculate the apparent diffusion coefficient (ADC) in each direction on
color_fa() Color fractional anisotropy of diffusion tensor
fa() Fractional anisotropy (FA) calculated from cached eigenvalues.
ga() Geodesic anisotropy (GA) calculated from cached eigenvalues.
linearity()
Returns:
md() Mean diffusivity (MD) calculated from cached eigenvalues.
mode() Tensor mode calculated from cached eigenvalues.
odf(sphere) The diffusion orientation distribution function (dODF).
planarity()
Returns:
predict(gtab[, S0, step]) Given a model fit, predict the signal on the vertices of a sphere
rd() Radial diffusivity (RD) calculated from cached eigenvalues.
sphericity()
Returns:
trace() Trace of the tensor calculated from cached eigenvalues.
lower_triangular  
__init__(model, model_params, model_S0=None)

Initialize a TensorFit class instance.

S0_hat
ad()

Axial diffusivity (AD) calculated from cached eigenvalues.

Returns:
ad : array (V, 1)

Calculated AD.

Notes

RD is calculated with the following equation:

\[AD = \lambda_1\]
adc(sphere)
Calculate the apparent diffusion coefficient (ADC) in each direction on the sphere for each voxel in the data
Parameters:
sphere : Sphere class instance
Returns:
adc : ndarray

The estimates of the apparent diffusion coefficient in every direction on the input sphere

ec{b} Q ec{b}^T

Where Q is the quadratic form of the tensor.
color_fa()

Color fractional anisotropy of diffusion tensor

directions

For tracking - return the primary direction in each voxel

evals

Returns the eigenvalues of the tensor as an array

evecs

Returns the eigenvectors of the tensor as an array, columnwise

fa()

Fractional anisotropy (FA) calculated from cached eigenvalues.

ga()

Geodesic anisotropy (GA) calculated from cached eigenvalues.

linearity()
Returns:
linearity : array

Calculated linearity of the diffusion tensor [1].

Notes

Linearity is calculated with the following equation:

\[Linearity = \frac{\lambda_1-\lambda_2}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz
F., “Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.
lower_triangular(b0=None)
md()

Mean diffusivity (MD) calculated from cached eigenvalues.

Returns:
md : array (V, 1)

Calculated MD.

Notes

MD is calculated with the following equation:

\[MD = \frac{\lambda_1+\lambda_2+\lambda_3}{3}\]
mode()

Tensor mode calculated from cached eigenvalues.

odf(sphere)

The diffusion orientation distribution function (dODF). This is an estimate of the diffusion distance in each direction

Parameters:
sphere : Sphere class instance.

The dODF is calculated in the vertices of this input.

Returns:
odf : ndarray

The diffusion distance in every direction of the sphere in every voxel in the input data.

Notes

This is based on equation 3 in [Aganj2010]. To re-derive it from scratch, follow steps in [Descoteaux2008], Section 7.9 Equation 7.24 but with an \(r^2\) term in the integral.

References

[Aganj2010](1, 2) Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., & Harel, N. (2010). Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magnetic Resonance in Medicine, 64(2), 554-566. doi:DOI: 10.1002/mrm.22365
[Descoteaux2008](1, 2) Descoteaux, M. (2008). PhD Thesis: High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation and Tractography. ftp://ftp-sop.inria.fr/athena/Publications/PhDs/descoteaux_thesis.pdf
planarity()
Returns:
sphericity : array

Calculated sphericity of the diffusion tensor [1].

Notes

Sphericity is calculated with the following equation:

\[Sphericity = \frac{2 (\lambda_2 - \lambda_3)}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz
F., “Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.
predict(gtab, S0=None, step=None)

Given a model fit, predict the signal on the vertices of a sphere

Parameters:
gtab : a GradientTable class instance

This encodes the directions for which a prediction is made

S0 : float array

The mean non-diffusion weighted signal in each voxel. Default: The fitted S0 value in all voxels if it was fitted. Otherwise 1 in all voxels.

step : int

The chunk size as a number of voxels. Optional parameter with default value 10,000.

In order to increase speed of processing, tensor fitting is done simultaneously over many voxels. This parameter sets the number of voxels that will be fit at once in each iteration. A larger step value should speed things up, but it will also take up more memory. It is advisable to keep an eye on memory consumption as this value is increased.

Notes

The predicted signal is given by:

\[S( heta, b) = S_0 * e^{-b ADC}\]

Where: .. math

ADC =       heta Q  heta^T

:math:` heta` is a unit vector pointing at any direction on the sphere for which a signal is to be predicted and \(b\) is the b value provided in the GradientTable input for that direction

quadratic_form

Calculates the 3x3 diffusion tensor for each voxel

rd()

Radial diffusivity (RD) calculated from cached eigenvalues.

Returns:
rd : array (V, 1)

Calculated RD.

Notes

RD is calculated with the following equation:

\[RD = \frac{\lambda_2 + \lambda_3}{2}\]
shape
sphericity()
Returns:
sphericity : array

Calculated sphericity of the diffusion tensor [1].

Notes

Sphericity is calculated with the following equation:

\[Sphericity = \frac{3 \lambda_3}{\lambda_1+\lambda_2+\lambda_3}\]

References

[1] Westin C.-F., Peled S., Gubjartsson H., Kikinis R., Jolesz
F., “Geometrical diffusion measures for MRI from tensor basis analysis” in Proc. 5th Annual ISMRM, 1997.
trace()

Trace of the tensor calculated from cached eigenvalues.

Returns:
trace : array (V, 1)

Calculated trace.

Notes

The trace is calculated with the following equation:

\[trace = \lambda_1 + \lambda_2 + \lambda_3\]

cholesky_to_lower_triangular

dipy.reconst.fwdti.cholesky_to_lower_triangular(R)

Convert Cholesky decompostion elements to the diffusion tensor elements

Parameters:
R : array (6,)

Array containing the six Cholesky’s decomposition elements (R0, R1, R2, R3, R4, R5) [1].

Returns:
tensor_elements : array (6,)

Array containing the six elements of diffusion tensor’s lower triangular.

References

[1](1, 2) Koay, C.G., Carew, J.D., Alexander, A.L., Basser, P.J., Meyerand, M.E., 2006. Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging. Magnetic Resonance in Medicine, 55(4), 930-936. doi:10.1002/mrm.20832

decompose_tensor

dipy.reconst.fwdti.decompose_tensor(tensor, min_diffusivity=0)

Returns eigenvalues and eigenvectors given a diffusion tensor

Computes tensor eigen decomposition to calculate eigenvalues and eigenvectors (Basser et al., 1994a).

Parameters:
tensor : array (…, 3, 3)

Hermitian matrix representing a diffusion tensor.

min_diffusivity : float

Because negative eigenvalues are not physical and small eigenvalues, much smaller than the diffusion weighting, cause quite a lot of noise in metrics such as fa, diffusivity values smaller than min_diffusivity are replaced with min_diffusivity.

Returns:
eigvals : array (…, 3)

Eigenvalues from eigen decomposition of the tensor. Negative eigenvalues are replaced by zero. Sorted from largest to smallest.

eigvecs : array (…, 3, 3)

Associated eigenvectors from eigen decomposition of the tensor. Eigenvectors are columnar (e.g. eigvecs[…, :, j] is associated with eigvals[…, j])

design_matrix

dipy.reconst.fwdti.design_matrix(gtab, dtype=None)

Constructs design matrix for DTI weighted least squares or least squares fitting. (Basser et al., 1994a)

Parameters:
gtab : A GradientTable class instance
dtype : string

Parameter to control the dtype of returned designed matrix

Returns:
design_matrix : array (g,7)

Design matrix or B matrix assuming Gaussian distributed tensor model design_matrix[j, :] = (Bxx, Byy, Bzz, Bxy, Bxz, Byz, dummy)

from_lower_triangular

dipy.reconst.fwdti.from_lower_triangular(D)

Returns a tensor given the six unique tensor elements

Given the six unique tensor elements (in the order: Dxx, Dxy, Dyy, Dxz, Dyz, Dzz) returns a 3 by 3 tensor. All elements after the sixth are ignored.

Parameters:
D : array_like, (…, >6)

Unique elements of the tensors

Returns:
tensor : ndarray (…, 3, 3)

3 by 3 tensors

fwdti_prediction

dipy.reconst.fwdti.fwdti_prediction(params, gtab, S0=1, Diso=0.003)

Signal prediction given the free water DTI model parameters.

Parameters:
params : (…, 13) ndarray

Model parameters. The last dimension should have the 12 tensor parameters (3 eigenvalues, followed by the 3 corresponding eigenvectors) and the volume fraction of the free water compartment.

gtab : a GradientTable class instance

The gradient table for this prediction

S0 : float or ndarray

The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1

Diso : float, optional

Value of the free water isotropic diffusion. Default is set to 3e-3 \(mm^{2}.s^{-1}\). Please adjust this value if you are assuming different units of diffusion.

Returns:
S : (…, N) ndarray

Simulated signal based on the free water DTI model

Notes

The predicted signal is given by: \(S(\theta, b) = S_0 * [(1-f) * e^{-b ADC} + f * e^{-b D_{iso}]\), where \(ADC = \theta Q \theta^T\), \(\theta\) is a unit vector pointing at any direction on the sphere for which a signal is to be predicted, \(b\) is the b value provided in the GradientTable input for that direction, \(Q\) is the quadratic form of the tensor determined by the input parameters, \(f\) is the free water diffusion compartment, \(D_{iso}\) is the free water diffusivity which is equal to $3 * 10^{-3} mm^{2}s^{-1} [1].

References

[1](1, 2) Hoy, A.R., Koay, C.G., Kecskemeti, S.R., Alexander, A.L., 2014. Optimization of a free water elimination two-compartmental model for diffusion tensor imaging. NeuroImage 103, 323-333. doi: 10.1016/j.neuroimage.2014.09.053

lower_triangular

dipy.reconst.fwdti.lower_triangular(tensor, b0=None)

Returns the six lower triangular values of the tensor and a dummy variable if b0 is not None

Parameters:
tensor : array_like (…, 3, 3)

a collection of 3, 3 diffusion tensors

b0 : float

if b0 is not none log(b0) is returned as the dummy variable

Returns:
D : ndarray

If b0 is none, then the shape will be (…, 6) otherwise (…, 7)

lower_triangular_to_cholesky

dipy.reconst.fwdti.lower_triangular_to_cholesky(tensor_elements)

Perfoms Cholesky decomposition of the diffusion tensor

Parameters:
tensor_elements : array (6,)

Array containing the six elements of diffusion tensor’s lower triangular.

Returns:
cholesky_elements : array (6,)

Array containing the six Cholesky’s decomposition elements (R0, R1, R2, R3, R4, R5) [1].

References

[1](1, 2) Koay, C.G., Carew, J.D., Alexander, A.L., Basser, P.J., Meyerand, M.E., 2006. Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging. Magnetic Resonance in Medicine, 55(4), 930-936. doi:10.1002/mrm.20832

multi_voxel_fit

dipy.reconst.fwdti.multi_voxel_fit(single_voxel_fit)

Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition

ndindex

dipy.reconst.fwdti.ndindex(shape)

An N-dimensional iterator object to index arrays.

Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each iteration a tuple of indices is returned; the last dimension is iterated over first.

Parameters:
shape : tuple of ints

The dimensions of the array.

Examples

>>> from dipy.core.ndindex import ndindex
>>> shape = (3, 2, 1)
>>> for index in ndindex(shape):
...     print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

nls_fit_tensor

dipy.reconst.fwdti.nls_fit_tensor(gtab, data, mask=None, Diso=0.003, mdreg=0.0027, min_signal=1e-06, f_transform=True, cholesky=False, jac=False, weighting=None, sigma=None)

Fit the water elimination tensor model using the non-linear least-squares.

Parameters:
gtab : a GradientTable class instance

The gradient table containing diffusion acquisition parameters.

data : ndarray ([X, Y, Z, …], g)

Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data.

mask : array, optional

A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[:-1]

Diso : float, optional

Value of the free water isotropic diffusion. Default is set to 3e-3 \(mm^{2}.s^{-1}\). Please ajust this value if you are assuming different units of diffusion.

mdreg : float, optimal

DTI’s mean diffusivity regularization threshold. If standard DTI diffusion tensor’s mean diffusivity is almost near the free water diffusion value, the diffusion signal is assumed to be only free water diffusion (i.e. volume fraction will be set to 1 and tissue’s diffusion parameters are set to zero). Default md_reg is 2.7e-3 \(mm^{2}.s^{-1}\) (corresponding to 90% of the free water diffusion value).

min_signal : float

The minimum signal value. Needs to be a strictly positive number. Default: 1.0e-6.

f_transform : bool, optional

If true, the water volume fractions is converted during the convergence procedure to ft = arcsin(2*f - 1) + pi/2, insuring f estimates between 0 and 1. Default: True

cholesky : bool, optional

If true it uses cholesky decomposition to insure that diffusion tensor is positive define. Default: False

jac : bool

Use the Jacobian? Default: False

weighting: str, optional

the weighting scheme to use in considering the squared-error. Default behavior is to use uniform weighting. Other options: ‘sigma’ ‘gmm’

sigma: float, optional

If the ‘sigma’ weighting scheme is used, a value of sigma needs to be provided here. According to [Chang2005], a good value to use is 1.5267 * std(background_noise), where background_noise is estimated from some part of the image known to contain no signal (only noise).

Returns:
fw_params : ndarray (x, y, z, 13)

Matrix containing in the dimention the free water model parameters in the following order:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. The volume fraction of the free water compartment

nls_iter

dipy.reconst.fwdti.nls_iter(design_matrix, sig, S0, Diso=0.003, mdreg=0.0027, min_signal=1e-06, cholesky=False, f_transform=True, jac=False, weighting=None, sigma=None)

Applies non linear least squares fit of the water free elimination model to single voxel signals.

Parameters:
design_matrix : array (g, 7)

Design matrix holding the covariants used to solve for the regression coefficients.

sig : array (g, )

Diffusion-weighted signal for a single voxel data.

S0 : float

Non diffusion weighted signal (i.e. signal for b-value=0).

Diso : float, optional

Value of the free water isotropic diffusion. Default is set to 3e-3 \(mm^{2}.s^{-1}\). Please ajust this value if you are assuming different units of diffusion.

mdreg : float, optimal

DTI’s mean diffusivity regularization threshold. If standard DTI diffusion tensor’s mean diffusivity is almost near the free water diffusion value, the diffusion signal is assumed to be only free water diffusion (i.e. volume fraction will be set to 1 and tissue’s diffusion parameters are set to zero). Default md_reg is 2.7e-3 \(mm^{2}.s^{-1}\) (corresponding to 90% of the free water diffusion value).

min_signal : float

The minimum signal value. Needs to be a strictly positive number.

cholesky : bool, optional

If true it uses cholesky decomposition to insure that diffusion tensor is positive define. Default: False

f_transform : bool, optional

If true, the water volume fractions is converted during the convergence procedure to ft = arcsin(2*f - 1) + pi/2, insuring f estimates between 0 and 1. Default: True

jac : bool

Use the Jacobian? Default: False

weighting: str, optional

the weighting scheme to use in considering the squared-error. Default behavior is to use uniform weighting. Other options: ‘sigma’ ‘gmm’

sigma: float, optional

If the ‘sigma’ weighting scheme is used, a value of sigma needs to be provided here. According to [Chang2005], a good value to use is 1.5267 * std(background_noise), where background_noise is estimated from some part of the image known to contain no signal (only noise).

Returns:
All parameters estimated from the free water tensor model.
Parameters are ordered as follows:
  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. The volume fraction of the free water compartment.

vec_val_vect

dipy.reconst.fwdti.vec_val_vect()

Vectorize vecs.diag(vals).`vecs`.T for last 2 dimensions of vecs

Parameters:
vecs : shape (…, M, N) array

containing tensor in last two dimensions; M, N usually equal to (3, 3)

vals : shape (…, N) array

diagonal values carried in last dimension, ... shape above must match that for vecs

Returns:
res : shape (…, M, M) array

For all the dimensions ellided by ..., loops to get (M, N) vec matrix, and (N,) vals vector, and calculates vec.dot(np.diag(val).dot(vec.T).

Raises:
ValueError : non-matching ... dimensions of vecs, vals
ValueError : non-matching N dimensions of vecs, vals

Examples

Make a 3D array where the first dimension is only 1

>>> vecs = np.arange(9).reshape((1, 3, 3))
>>> vals = np.arange(3).reshape((1, 3))
>>> vec_val_vect(vecs, vals)
array([[[   9.,   24.,   39.],
        [  24.,   66.,  108.],
        [  39.,  108.,  177.]]])

That’s the same as the 2D case (apart from the float casting):

>>> vecs = np.arange(9).reshape((3, 3))
>>> vals = np.arange(3)
>>> np.dot(vecs, np.dot(np.diag(vals), vecs.T))
array([[  9,  24,  39],
       [ 24,  66, 108],
       [ 39, 108, 177]])

wls_fit_tensor

dipy.reconst.fwdti.wls_fit_tensor(gtab, data, Diso=0.003, mask=None, min_signal=1e-06, piterations=3, mdreg=0.0027)

Computes weighted least squares (WLS) fit to calculate self-diffusion tensor using a linear regression model [1].

Parameters:
gtab : a GradientTable class instance

The gradient table containing diffusion acquisition parameters.

data : ndarray ([X, Y, Z, …], g)

Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data.

Diso : float, optional

Value of the free water isotropic diffusion. Default is set to 3e-3 \(mm^{2}.s^{-1}\). Please ajust this value if you are assuming different units of diffusion.

mask : array, optional

A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[:-1]

min_signal : float

The minimum signal value. Needs to be a strictly positive number. Default: 1.0e-6.

piterations : inter, optional

Number of iterations used to refine the precision of f. Default is set to 3 corresponding to a precision of 0.01.

mdreg : float, optimal

DTI’s mean diffusivity regularization threshold. If standard DTI diffusion tensor’s mean diffusivity is almost near the free water diffusion value, the diffusion signal is assumed to be only free water diffusion (i.e. volume fraction will be set to 1 and tissue’s diffusion parameters are set to zero). Default md_reg is 2.7e-3 \(mm^{2}.s^{-1}\) (corresponding to 90% of the free water diffusion value).

Returns:
fw_params : ndarray (x, y, z, 13)

Matrix containing in the last dimention the free water model parameters in the following order:

  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. The volume fraction of the free water compartment.

References

[1](1, 2, 3) Hoy, A.R., Koay, C.G., Kecskemeti, S.R., Alexander, A.L., 2014. Optimization of a free water elimination two-compartmental model for diffusion tensor imaging. NeuroImage 103, 323-333. doi: 10.1016/j.neuroimage.2014.09.053

wls_iter

dipy.reconst.fwdti.wls_iter(design_matrix, sig, S0, Diso=0.003, mdreg=0.0027, min_signal=1e-06, piterations=3)

Applies weighted linear least squares fit of the water free elimination model to single voxel signals.

Parameters:
design_matrix : array (g, 7)

Design matrix holding the covariants used to solve for the regression coefficients.

sig : array (g, )

Diffusion-weighted signal for a single voxel data.

S0 : float

Non diffusion weighted signal (i.e. signal for b-value=0).

Diso : float, optional

Value of the free water isotropic diffusion. Default is set to 3e-3 \(mm^{2}.s^{-1}\). Please ajust this value if you are assuming different units of diffusion.

mdreg : float, optimal

DTI’s mean diffusivity regularization threshold. If standard DTI diffusion tensor’s mean diffusivity is almost near the free water diffusion value, the diffusion signal is assumed to be only free water diffusion (i.e. volume fraction will be set to 1 and tissue’s diffusion parameters are set to zero). Default md_reg is 2.7e-3 \(mm^{2}.s^{-1}\) (corresponding to 90% of the free water diffusion value).

min_signal : float

The minimum signal value. Needs to be a strictly positive number. Default: minimal signal in the data provided to fit.

piterations : inter, optional

Number of iterations used to refine the precision of f. Default is set to 3 corresponding to a precision of 0.01.

Returns:
All parameters estimated from the free water tensor model.
Parameters are ordered as follows:
  1. Three diffusion tensor’s eigenvalues
  2. Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector
  3. The volume fraction of the free water compartment

Cache

class dipy.reconst.gqi.Cache

Bases: object

Cache values based on a key object (such as a sphere or gradient table).

Notes

This class is meant to be used as a mix-in:

class MyModel(Model, Cache):
    pass

class MyModelFit(Fit):
    pass

Inside a method on the fit, typical usage would be:

def odf(sphere):
    M = self.model.cache_get('odf_basis_matrix', key=sphere)

    if M is None:
        M = self._compute_basis_matrix(sphere)
        self.model.cache_set('odf_basis_matrix', key=sphere, value=M)

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

cache_clear()

Clear the cache.

cache_get(tag, key, default=None)

Retrieve a value from the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

default : object

Value to be returned if no cached entry is found.

Returns:
v : object

Value from the cache associated with (tag, key). Returns default if no cached entry is found.

cache_set(tag, key, value)

Store a value in the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

value : object

Value stored in the cache for each unique combination of (tag, key).

Examples

>>> def compute_expensive_matrix(parameters):
...     # Imagine the following computation is very expensive
...     return (p**2 for p in parameters)
>>> c = Cache()
>>> parameters = (1, 2, 3)
>>> X1 = compute_expensive_matrix(parameters)
>>> c.cache_set('expensive_matrix', parameters, X1)
>>> X2 = c.cache_get('expensive_matrix', parameters)
>>> X1 is X2
True

GeneralizedQSamplingFit

class dipy.reconst.gqi.GeneralizedQSamplingFit(model, data)

Bases: dipy.reconst.odf.OdfFit

Methods

odf(sphere) Calculates the discrete ODF for a given discrete sphere.
__init__(model, data)

Calculates PDF and ODF for a single voxel

Parameters:
model : object,

DiffusionSpectrumModel

data : 1d ndarray,

signal values

odf(sphere)

Calculates the discrete ODF for a given discrete sphere.

GeneralizedQSamplingModel

class dipy.reconst.gqi.GeneralizedQSamplingModel(gtab, method='gqi2', sampling_length=1.2, normalize_peaks=False)

Bases: dipy.reconst.odf.OdfModel, dipy.reconst.cache.Cache

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fit method for every voxel in data
__init__(gtab, method='gqi2', sampling_length=1.2, normalize_peaks=False)

Generalized Q-Sampling Imaging [1]

This model has the same assumptions as the DSI method i.e. Cartesian grid sampling in q-space and fast gradient switching.

Implements equations 2.14 from [2] for standard GQI and equation 2.16 from [2] for GQI2. You can think of GQI2 as an analytical solution of the DSI ODF.

Parameters:
gtab : object,

GradientTable

method : str,

‘standard’ or ‘gqi2’

sampling_length : float,

diffusion sampling length (lambda in eq. 2.14 and 2.16)

Notes

As of version 0.9, range of the sampling length in GQI2 has changed to match the same scale used in the ‘standard’ method [1]. This means that the value of sampling_length should be approximately 1 - 1.3 (see [1], pg. 1628).

References

[1](1, 2, 3, 4) Yeh F-C et al., “Generalized Q-Sampling Imaging”, IEEE TMI, 2010
[2](1, 2, 3) Garyfallidis E, “Towards an accurate brain tractography”, PhD

thesis, University of Cambridge, 2012.

Examples

Here we create an example where we provide the data, a gradient table and a reconstruction sphere and calculate the ODF for the first voxel in the data.

>>> from dipy.data import dsi_voxels
>>> data, gtab = dsi_voxels()
>>> from dipy.core.subdivide_octahedron import create_unit_sphere
>>> sphere = create_unit_sphere(5)
>>> from dipy.reconst.gqi import GeneralizedQSamplingModel
>>> gq = GeneralizedQSamplingModel(gtab, 'gqi2', 1.1)
>>> voxel_signal = data[0, 0, 0]
>>> odf = gq.fit(voxel_signal).odf(sphere)
fit(data, mask=None)

Fit method for every voxel in data

OdfFit

class dipy.reconst.gqi.OdfFit(model, data)

Bases: dipy.reconst.base.ReconstFit

Methods

odf(sphere) To be implemented but specific odf models
__init__(model, data)

Initialize self. See help(type(self)) for accurate signature.

odf(sphere)

To be implemented but specific odf models

OdfModel

class dipy.reconst.gqi.OdfModel(gtab)

Bases: dipy.reconst.base.ReconstModel

An abstract class to be sub-classed by specific odf models

All odf models should provide a fit method which may take data as it’s first and only argument.

Methods

fit(data) To be implemented by specific odf models
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data)

To be implemented by specific odf models

equatorial_maximum

dipy.reconst.gqi.equatorial_maximum(vertices, odf, pole, width)

equatorial_zone_vertices

dipy.reconst.gqi.equatorial_zone_vertices(vertices, pole, width=5)

finds the ‘vertices’ in the equatorial zone conjugate to ‘pole’ with width half ‘width’ degrees

gfa

dipy.reconst.gqi.gfa(samples)

The general fractional anisotropy of a function evaluated on the unit sphere

Parameters:
samples : ndarray

Values of data on the unit sphere.

Returns:
gfa : ndarray

GFA evaluated in each entry of the array, along the last dimension. An np.nan is returned for coordinates that contain all-zeros in samples.

Notes

The GFA is defined as [1]

\sqrt{\frac{n \sum_i{(\Psi_i - <\Psi>)^2}}{(n-1) \sum{\Psi_i ^ 2}}}

Where \(\Psi\) is an orientation distribution function sampled discretely on the unit sphere and angle brackets denote average over the samples on the sphere.

[1]Quality assessment of High Angular Resolution Diffusion Imaging data using bootstrap on Q-ball reconstruction. J. Cohen Adad, M. Descoteaux, L.L. Wald. JMRI 33: 1194-1208.

local_maxima

dipy.reconst.gqi.local_maxima()

Local maxima of a function evaluated on a discrete set of points.

If a function is evaluated on some set of points where each pair of neighboring points is an edge in edges, find the local maxima.

Parameters:
odf : array, 1d, dtype=double

The function evaluated on a set of discrete points.

edges : array (N, 2)

The set of neighbor relations between the points. Every edge, ie edges[i, :], is a pair of neighboring points.

Returns:
peak_values : ndarray

Value of odf at a maximum point. Peak values is sorted in descending order.

peak_indices : ndarray

Indices of maximum points. Sorted in the same order as peak_values so odf[peak_indices[i]] == peak_values[i].

See also

dipy.core.sphere

multi_voxel_fit

dipy.reconst.gqi.multi_voxel_fit(single_voxel_fit)

Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition

normalize_qa

dipy.reconst.gqi.normalize_qa(qa, max_qa=None)

Normalize quantitative anisotropy.

Used mostly with GQI rather than GQI2.

Parameters:
qa : array, shape (X, Y, Z, N)

where N is the maximum number of peaks stored

max_qa : float,

maximum qa value. Usually found in the CSF (corticospinal fluid).

Returns:
nqa : array, shape (x, Y, Z, N)

normalized quantitative anisotropy

Notes

Normalized quantitative anisotropy has the very useful property to be very small near gray matter and background areas. Therefore, it can be used to mask out white matter areas.

npa

dipy.reconst.gqi.npa(self, odf, width=5)

non-parametric anisotropy

Nimmo-Smith et al. ISMRM 2011

odf_sum

dipy.reconst.gqi.odf_sum(odf)

patch_maximum

dipy.reconst.gqi.patch_maximum(vertices, odf, pole, width)

patch_sum

dipy.reconst.gqi.patch_sum(vertices, odf, pole, width)

patch_vertices

dipy.reconst.gqi.patch_vertices(vertices, pole, width)

find ‘vertices’ within the cone of ‘width’ degrees around ‘pole’

polar_zone_vertices

dipy.reconst.gqi.polar_zone_vertices(vertices, pole, width=5)

finds the ‘vertices’ in the equatorial band around the ‘pole’ of radius ‘width’ degrees

remove_similar_vertices

dipy.reconst.gqi.remove_similar_vertices()

Remove vertices that are less than theta degrees from any other

Returns vertices that are at least theta degrees from any other vertex. Vertex v and -v are considered the same so if v and -v are both in vertices only one is kept. Also if v and w are both in vertices, w must be separated by theta degrees from both v and -v to be unique.

Parameters:
vertices : (N, 3) ndarray

N unit vectors.

theta : float

The minimum separation between vertices in degrees.

return_mapping : {False, True}, optional

If True, return mapping as well as vertices and maybe indices (see below).

return_indices : {False, True}, optional

If True, return indices as well as vertices and maybe mapping (see below).

Returns:
unique_vertices : (M, 3) ndarray

Vertices sufficiently separated from one another.

mapping : (N,) ndarray

For each element vertices[i] (\(i \in 0..N-1\)), the index \(j\) to a vertex in unique_vertices that is less than theta degrees from vertices[i]. Only returned if return_mapping is True.

indices : (N,) ndarray

indices gives the reverse of mapping. For each element unique_vertices[j] (\(j \in 0..M-1\)), the index \(i\) to a vertex in vertices that is less than theta degrees from unique_vertices[j]. If there is more than one element of vertices that is less than theta degrees from unique_vertices[j], return the first (lowest index) matching value. Only return if return_indices is True.

squared_radial_component

dipy.reconst.gqi.squared_radial_component(x, tol=0.01)

Part of the GQI2 integral

Eq.8 in the referenced paper by Yeh et al. 2010

triple_odf_maxima

dipy.reconst.gqi.triple_odf_maxima(vertices, odf, width)

upper_hemi_map

dipy.reconst.gqi.upper_hemi_map(v)

maps a 3-vector into the z-upper hemisphere

Interpolator

class dipy.reconst.interpolate.Interpolator(data, voxel_size)

Bases: object

Class to be subclassed by different interpolator types

__init__(data, voxel_size)

Initialize self. See help(type(self)) for accurate signature.

NearestNeighborInterpolator

class dipy.reconst.interpolate.NearestNeighborInterpolator(data, voxel_size)

Bases: dipy.reconst.interpolate.Interpolator

Interpolates data using nearest neighbor interpolation

__init__(data, voxel_size)

Initialize self. See help(type(self)) for accurate signature.

OutsideImage

class dipy.reconst.interpolate.OutsideImage

Bases: Exception

Attributes:
args

Methods

with_traceback Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

TriLinearInterpolator

class dipy.reconst.interpolate.TriLinearInterpolator(data, voxel_size)

Bases: dipy.reconst.interpolate.Interpolator

Interpolates data using trilinear interpolation

interpolate 4d diffusion volume using 3 indices, ie data[x, y, z]

__init__(data, voxel_size)

Initialize self. See help(type(self)) for accurate signature.

array

dipy.reconst.interpolate.array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)

Create an array.

Parameters:
object : array_like

An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence.

dtype : data-type, optional

The desired data-type for the array. If not given, then the type will be determined as the minimum type required to hold the objects in the sequence. This argument can only be used to ‘upcast’ the array. For downcasting, use the .astype(t) method.

copy : bool, optional

If true (default), then the object is copied. Otherwise, a copy will only be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (dtype, order, etc.).

order : {‘K’, ‘A’, ‘C’, ‘F’}, optional

Specify the memory layout of the array. If object is not an array, the newly created array will be in C order (row major) unless ‘F’ is specified, in which case it will be in Fortran order (column major). If object is an array the following holds.

order no copy copy=True
‘K’ unchanged F & C order preserved, otherwise most similar order
‘A’ unchanged F order if input is F and not C, otherwise C order
‘C’ C order C order
‘F’ F order F order

When copy=False and a copy is made for other reasons, the result is the same as if copy=True, with some exceptions for A, see the Notes section. The default order is ‘K’.

subok : bool, optional

If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default).

ndmin : int, optional

Specifies the minimum number of dimensions that the resulting array should have. Ones will be pre-pended to the shape as needed to meet this requirement.

Returns:
out : ndarray

An array object satisfying the specified requirements.

See also

empty_like
Return an empty array with shape and type of input.
ones_like
Return an array of ones with shape and type of input.
zeros_like
Return an array of zeros with shape and type of input.
full_like
Return a new array with shape of input filled with value.
empty
Return a new uninitialized array.
ones
Return a new array setting values to one.
zeros
Return a new array setting values to zero.
full
Return a new array of given shape filled with value.

Notes

When order is ‘A’ and object is an array in neither ‘C’ nor ‘F’ order, and a copy is forced by a change in dtype, then the order of the result is not necessarily ‘C’ as expected. This is likely a bug.

Examples

>>> np.array([1, 2, 3])
array([1, 2, 3])

Upcasting:

>>> np.array([1, 2, 3.0])
array([ 1.,  2.,  3.])

More than one dimension:

>>> np.array([[1, 2], [3, 4]])
array([[1, 2],
       [3, 4]])

Minimum dimensions 2:

>>> np.array([1, 2, 3], ndmin=2)
array([[1, 2, 3]])

Type provided:

>>> np.array([1, 2, 3], dtype=complex)
array([ 1.+0.j,  2.+0.j,  3.+0.j])

Data-type consisting of more than one element:

>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
>>> x['a']
array([1, 3])

Creating an array from sub-classes:

>>> np.array(np.mat('1 2; 3 4'))
array([[1, 2],
       [3, 4]])
>>> np.array(np.mat('1 2; 3 4'), subok=True)
matrix([[1, 2],
        [3, 4]])

trilinear_interp

dipy.reconst.interpolate.trilinear_interp()

Interpolates vector from 4D data at 3D point given by index

Interpolates a vector of length T from a 4D volume of shape (I, J, K, T), given point (x, y, z) where (x, y, z) are the coordinates of the point in real units (not yet adjusted for voxel size).

IvimFit

class dipy.reconst.ivim.IvimFit(model, model_params)

Bases: object

Attributes:
D
D_star
S0_predicted
perfusion_fraction
shape

Methods

predict(gtab[, S0]) Given a model fit, predict the signal.
__init__(model, model_params)

Initialize a IvimFit class instance. Parameters ———- model : Model class model_params : array

The parameters of the model. In this case it is an array of ivim parameters. If the fitting is done for multi_voxel data, the multi_voxel decorator will run the fitting on all the voxels and model_params will be an array of the dimensions (data[:-1], 4), i.e., there will be 4 parameters for each of the voxels.
D
D_star
S0_predicted
perfusion_fraction
predict(gtab, S0=1.0)

Given a model fit, predict the signal.

Parameters:
gtab : GradientTable class instance

Gradient directions and bvalues

S0 : float

S0 value here is not necessary and will not be used to predict the signal. It has been added to conform to the structure of the predict method in multi_voxel which requires a keyword argument S0.

Returns:
signal : array

The signal values predicted for this model using its parameters.

shape

IvimModelLM

class dipy.reconst.ivim.IvimModelLM(gtab, split_b_D=400.0, split_b_S0=200.0, bounds=None, two_stage=True, tol=1e-15, x_scale=[1000.0, 0.1, 0.001, 0.0001], gtol=1e-15, ftol=1e-15, eps=1e-15, maxiter=1000)

Bases: dipy.reconst.base.ReconstModel

Ivim model

Methods

estimate_f_D_star(params_f_D_star, data, S0, D) Estimate f and D_star using the values of all the other parameters obtained from a linear fit.
estimate_linear_fit(data, split_b[, less_than]) Estimate a linear fit by taking log of data.
fit(data[, mask]) Fit method for every voxel in data
predict(ivim_params, gtab[, S0]) Predict a signal for this IvimModel class instance given parameters.
__init__(gtab, split_b_D=400.0, split_b_S0=200.0, bounds=None, two_stage=True, tol=1e-15, x_scale=[1000.0, 0.1, 0.001, 0.0001], gtol=1e-15, ftol=1e-15, eps=1e-15, maxiter=1000)

Initialize an IVIM model.

The IVIM model assumes that biological tissue includes a volume fraction ‘f’ of water flowing with a pseudo-diffusion coefficient D* and a fraction (1-f) of static (diffusion only), intra and extracellular water, with a diffusion coefficient D. In this model the echo attenuation of a signal in a single voxel can be written as

\[\]

S(b) = S_0[f*e^{(-b*D*)} + (1-f)e^{(-b*D)}]

Where: .. math:

S_0, f, D* and D are the IVIM parameters.

Parameters:
gtab : GradientTable class instance

Gradient directions and bvalues

split_b_D : float, optional

The b-value to split the data on for two-stage fit. This will be used while estimating the value of D. The assumption is that at higher b values the effects of perfusion is less and hence the signal can be approximated as a mono-exponential decay. default : 400.

split_b_S0 : float, optional

The b-value to split the data on for two-stage fit for estimation of S0 and initial guess for D_star. The assumption here is that at low bvalues the effects of perfusion are more. default : 200.

bounds : tuple of arrays with 4 elements, optional

Bounds to constrain the fitted model parameters. This is only supported for Scipy version > 0.17. When using a older Scipy version, this function will raise an error if bounds are different from None. This parameter is also used to fill nan values for out of bounds parameters in the IvimFit class using the method fill_na. default : ([0., 0., 0., 0.], [np.inf, .3, 1., 1.])

two_stage : bool

Argument to specify whether to perform a non-linear fitting of all parameters after the linear fitting by splitting the data based on bvalues. This gives more accurate parameters but takes more time. The linear fit can be used to get a quick estimation of the parameters. default : False

tol : float, optional

Tolerance for convergence of minimization. default : 1e-15

x_scale : array, optional

Scaling for the parameters. This is passed to least_squares which is only available for Scipy version > 0.17. default: [1000, 0.01, 0.001, 0.0001]

gtol : float, optional

Tolerance for termination by the norm of the gradient. default : 1e-15

ftol : float, optional

Tolerance for termination by the change of the cost function. default : 1e-15

eps : float, optional

Step size used for numerical approximation of the jacobian. default : 1e-15

maxiter : int, optional

Maximum number of iterations to perform. default : 1000

References

[1]Le Bihan, Denis, et al. “Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.” Radiology 168.2 (1988): 497-505.
[2]Federau, Christian, et al. “Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging.” Radiology 265.3 (2012): 874-881.
estimate_f_D_star(params_f_D_star, data, S0, D)

Estimate f and D_star using the values of all the other parameters obtained from a linear fit.

Parameters:
params_f_D_star: array

An array containing the value of f and D_star.

data : array

Array containing the actual signal values.

S0 : float

The parameters S0 obtained from a linear fit.

D : float

The parameters D obtained from a linear fit.

Returns:
f : float

Perfusion fraction estimated from the fit.

D_star :

The value of D_star estimated from the fit.

estimate_linear_fit(data, split_b, less_than=True)

Estimate a linear fit by taking log of data.

Parameters:
data : array

An array containing the data to be fit

split_b : float

The b value to split the data

less_than : bool

If True, splitting occurs for bvalues less than split_b

Returns:
S0 : float

The estimated S0 value. (intercept)

D : float

The estimated value of D.

fit(data, mask=None)

Fit method for every voxel in data

predict(ivim_params, gtab, S0=1.0)

Predict a signal for this IvimModel class instance given parameters.

Parameters:
ivim_params : array

The ivim parameters as an array [S0, f, D_star and D]

gtab : GradientTable class instance

Gradient directions and bvalues.

S0 : float, optional

This has been added just for consistency with the existing API. Unlike other models, IVIM predicts S0 and this is over written by the S0 value in params.

Returns:
ivim_signal : array

The predicted IVIM signal using given parameters.

IvimModelVP

class dipy.reconst.ivim.IvimModelVP(gtab, maxiter=10, xtol=1e-08)

Bases: dipy.reconst.base.ReconstModel

Methods

cvx_fit(signal, phi) Performs the constrained search for the linear parameters f after the estimation of x is done.
fit(data[, mask]) Fit method for every voxel in data
ivim_mix_cost_one(phi, signal) Constructs the objective for the :func: stoc_search_cost.
nlls_cost(x_f, signal) Cost function for the least square problem.
phi(x) Creates a structure for the combining the diffusion and pseudo- diffusion by multipling with the bvals and then exponentiating each of the two components for fitting as per the IVIM- two compartment model.
stoc_search_cost(x, signal) Cost function for differential evolution algorithm.
x_and_f_to_x_f(x, f) Combines the array of parameters ‘x’ and ‘f’ into x_f for performing NLLS on the final stage of optimization.
x_f_to_x_and_f(x_f) Splits the array of parameters in x_f to ‘x’ and ‘f’ for performing a search on the both of them independently using the Trust Region Method.
__init__(gtab, maxiter=10, xtol=1e-08)

Initialize an IvimModelVP class.

The IVIM model assumes that biological tissue includes a volume fraction ‘f’ of water flowing with a pseudo-diffusion coefficient D* and a fraction (1-f: treated as a separate fraction in the variable projection method) of static (diffusion only), intra and extracellular water, with a diffusion coefficient D. In this model the echo attenuation of a signal in a single voxel can be written as

\[\]

S(b) = S_0*[f*e^{(-b*D*)} + (1-f)e^{(-b*D)}]

Where: .. math:

S_0, f, D* and D are the IVIM parameters.

maxiter: int, optional
Maximum number of iterations for the Differential Evolution in SciPy. default : 10
xtol : float, optional
Tolerance for convergence of minimization. default : 1e-8

References

[1]Le Bihan, Denis, et al. “Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.” Radiology 168.2 (1988): 497-505.
[2]Federau, Christian, et al. “Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging.” Radiology 265.3 (2012): 874-881.
[3]Fadnavis, Shreyas et.al. “MicroLearn: Framework for machine learning, reconstruction, optimization and microstructure modeling, Proceedings of: International Society of Magnetic Resonance in Medicine (ISMRM), Montreal, Canada, 2019.
cvx_fit(signal, phi)

Performs the constrained search for the linear parameters f after the estimation of x is done. Estimation of the linear parameters f is a constrained linear least-squares optimization problem solved by using a convex optimizer from cvxpy. The IVIM equation contains two parameters that depend on the same volume fraction. Both are estimated as separately in the convex optimizer.

Parameters:
phi : array

Returns an array calculated from :func: phi.

signal : array

The signal values measured for this model.

Returns:
f1, f2 (volume fractions)

Notes

cost function for differential evolution algorithm:

\[minimize(norm((signal)- (phi*f)))\]
fit(data, mask=None)

Fit method for every voxel in data

ivim_mix_cost_one(phi, signal)

Constructs the objective for the :func: stoc_search_cost.

First calculates the Moore-Penrose inverse of the input phi and takes a dot product with the measured signal. The result obtained is again multiplied with phi to complete the projection of the variable into a transformed space. (see [1] and [2] for thorough discussion on Variable Projections and relevant cost functions).

Parameters:
phi : array

Returns an array calculated from :func: Phi.

signal : array

The signal values measured for this model.

Returns:
(signal - S)^T(signal - S)

Notes

to make cost function for Differential Evolution algorithm: .. math:

(signal -  S)^T(signal -  S)

References

[1](1, 2) Fadnavis, Shreyas et.al. “MicroLearn: Framework for machine learning, reconstruction, optimization and microstructure modeling, Proceedings of: International Society of Magnetic Resonance in Medicine (ISMRM), Montreal, Canada, 2019.
[2](1, 2) Farooq, Hamza, et al. “Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI.” Scientific reports 6 (2016).
nlls_cost(x_f, signal)

Cost function for the least square problem. The cost function is used in the Least Squares function of SciPy in :func: fit. It guarantees that stopping point of the algorithm is at least a stationary point with reduction in the the number of iterations required by the differential evolution optimizer.

Parameters:
x_f : array

Contains the parameters ‘x’ and ‘f’ combines in the same array.

signal : array

The signal values measured for this model.

Returns:
sum{(signal - phi*f)^2}

Notes

cost function for the least square problem.

\[sum{(signal - phi*f)^2}\]
phi(x)

Creates a structure for the combining the diffusion and pseudo- diffusion by multipling with the bvals and then exponentiating each of the two components for fitting as per the IVIM- two compartment model.

Parameters:
x : array

input from the Differential Evolution optimizer.

Returns:
exp_phi1 : array

Combined array of parameters perfusion/pseudo-diffusion and diffusion parameters.

stoc_search_cost(x, signal)

Cost function for differential evolution algorithm. Performs a stochastic search for the non-linear parameters ‘x’. The objective funtion is calculated in the :func: ivim_mix_cost_one. The function constructs the parameters using :func: phi.

Parameters:
x : array

input from the Differential Evolution optimizer.

signal : array

The signal values measured for this model.

Returns:
:func: `ivim_mix_cost_one`
x_and_f_to_x_f(x, f)

Combines the array of parameters ‘x’ and ‘f’ into x_f for performing NLLS on the final stage of optimization.

Parameters:
x, f : array

Splitted parameters into two separate arrays

Returns:
x_f : array

Combined array of parameters ‘x’ and ‘f’ parameters.

x_f_to_x_and_f(x_f)

Splits the array of parameters in x_f to ‘x’ and ‘f’ for performing a search on the both of them independently using the Trust Region Method.

Parameters:
x_f : array

Combined array of parameters ‘x’ and ‘f’ parameters.

Returns:
x, f : array

Splitted parameters into two separate arrays

LooseVersion

class dipy.reconst.ivim.LooseVersion(vstring=None)

Bases: distutils.version.Version

Version numbering for anarchists and software realists. Implements the standard interface for version number classes as described above. A version number consists of a series of numbers, separated by either periods or strings of letters. When comparing version numbers, the numeric components will be compared numerically, and the alphabetic components lexically. The following are all valid version numbers, in no particular order:

1.5.1 1.5.2b2 161 3.10a 8.02 3.4j 1996.07.12 3.2.pl0 3.1.1.6 2g6 11g 0.960923 2.2beta29 1.13++ 5.5.kw 2.0b1pl0

In fact, there is no such thing as an invalid version number under this scheme; the rules for comparison are simple and predictable, but may not always give the results you want (for some definition of “want”).

Methods

parse  
__init__(vstring=None)

Initialize self. See help(type(self)) for accurate signature.

component_re = re.compile('(\\d+ | [a-z]+ | \\.)', re.VERBOSE)
parse(vstring)

ReconstModel

class dipy.reconst.ivim.ReconstModel(gtab)

Bases: object

Abstract class for signal reconstruction models

Methods

fit  
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data, mask=None, **kwargs)

IvimModel

dipy.reconst.ivim.IvimModel(gtab, fit_method='LM', **kwargs)

Selector function to switch between the 2-stage Levenberg-Marquardt based NLLS fitting method (also containing the linear fit): LM and the Variable Projections based fitting method: VarPro.

Parameters:
fit_method : string, optional

The value fit_method can either be ‘LM’ or ‘VarPro’. default : LM

f_D_star_error

dipy.reconst.ivim.f_D_star_error(params, gtab, signal, S0, D)

Error function used to fit f and D_star keeping S0 and D fixed

Parameters:
params : array

The value of f and D_star.

gtab : GradientTable class instance

Gradient directions and bvalues.

signal : array

Array containing the actual signal values.

S0 : float

The parameters S0 obtained from a linear fit.

D : float

The parameters D obtained from a linear fit.

Returns:
residual : array

An array containing the difference of actual and estimated signal.

f_D_star_prediction

dipy.reconst.ivim.f_D_star_prediction(params, gtab, S0, D)

Function used to predict IVIM signal when S0 and D are known by considering f and D_star as the unknown parameters.

Parameters:
params : array

The value of f and D_star.

gtab : GradientTable class instance

Gradient directions and bvalues.

S0 : float

The parameters S0 obtained from a linear fit.

D : float

The parameters D obtained from a linear fit.

Returns:
S : array

An array containing the IVIM signal estimated using given parameters.

ivim_model_selector

dipy.reconst.ivim.ivim_model_selector(gtab, fit_method='LM', **kwargs)

Selector function to switch between the 2-stage Levenberg-Marquardt based NLLS fitting method (also containing the linear fit): LM and the Variable Projections based fitting method: VarPro.

Parameters:
fit_method : string, optional

The value fit_method can either be ‘LM’ or ‘VarPro’. default : LM

ivim_prediction

dipy.reconst.ivim.ivim_prediction(params, gtab)

The Intravoxel incoherent motion (IVIM) model function.

Parameters:
params : array

An array of IVIM parameters - [S0, f, D_star, D].

gtab : GradientTable class instance

Gradient directions and bvalues.

S0 : float, optional

This has been added just for consistency with the existing API. Unlike other models, IVIM predicts S0 and this is over written by the S0 value in params.

Returns:
S : array

An array containing the IVIM signal estimated using given parameters.

least_squares

dipy.reconst.ivim.least_squares(fun, x0, jac='2-point', bounds=(-inf, inf), method='trf', ftol=1e-08, xtol=1e-08, gtol=1e-08, x_scale=1.0, loss='linear', f_scale=1.0, diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={})

Solve a nonlinear least-squares problem with bounds on the variables.

Given the residuals f(x) (an m-dimensional real function of n real variables) and the loss function rho(s) (a scalar function), least_squares finds a local minimum of the cost function F(x):

minimize F(x) = 0.5 * sum(rho(f_i(x)**2), i = 0, ..., m - 1)
subject to lb <= x <= ub

The purpose of the loss function rho(s) is to reduce the influence of outliers on the solution.

Parameters:
fun : callable

Function which computes the vector of residuals, with the signature fun(x, *args, **kwargs), i.e., the minimization proceeds with respect to its first argument. The argument x passed to this function is an ndarray of shape (n,) (never a scalar, even for n=1). It must return a 1-d array_like of shape (m,) or a scalar. If the argument x is complex or the function fun returns complex residuals, it must be wrapped in a real function of real arguments, as shown at the end of the Examples section.

x0 : array_like with shape (n,) or float

Initial guess on independent variables. If float, it will be treated as a 1-d array with one element.

jac : {‘2-point’, ‘3-point’, ‘cs’, callable}, optional

Method of computing the Jacobian matrix (an m-by-n matrix, where element (i, j) is the partial derivative of f[i] with respect to x[j]). The keywords select a finite difference scheme for numerical estimation. The scheme ‘3-point’ is more accurate, but requires twice as much operations compared to ‘2-point’ (default). The scheme ‘cs’ uses complex steps, and while potentially the most accurate, it is applicable only when fun correctly handles complex inputs and can be analytically continued to the complex plane. Method ‘lm’ always uses the ‘2-point’ scheme. If callable, it is used as jac(x, *args, **kwargs) and should return a good approximation (or the exact value) for the Jacobian as an array_like (np.atleast_2d is applied), a sparse matrix or a scipy.sparse.linalg.LinearOperator.

bounds : 2-tuple of array_like, optional

Lower and upper bounds on independent variables. Defaults to no bounds. Each array must match the size of x0 or be a scalar, in the latter case a bound will be the same for all variables. Use np.inf with an appropriate sign to disable bounds on all or some variables.

method : {‘trf’, ‘dogbox’, ‘lm’}, optional

Algorithm to perform minimization.

  • ‘trf’ : Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  • ‘dogbox’ : dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.
  • ‘lm’ : Levenberg-Marquardt algorithm as implemented in MINPACK. Doesn’t handle bounds and sparse Jacobians. Usually the most efficient method for small unconstrained problems.

Default is ‘trf’. See Notes for more information.

ftol : float, optional

Tolerance for termination by the change of the cost function. Default is 1e-8. The optimization process is stopped when dF < ftol * F, and there was an adequate agreement between a local quadratic model and the true model in the last step.

xtol : float, optional

Tolerance for termination by the change of the independent variables. Default is 1e-8. The exact condition depends on the method used:

  • For ‘trf’ and ‘dogbox’ : norm(dx) < xtol * (xtol + norm(x))
  • For ‘lm’ : Delta < xtol * norm(xs), where Delta is a trust-region radius and xs is the value of x scaled according to x_scale parameter (see below).
gtol : float, optional

Tolerance for termination by the norm of the gradient. Default is 1e-8. The exact condition depends on a method used:

  • For ‘trf’ : norm(g_scaled, ord=np.inf) < gtol, where g_scaled is the value of the gradient scaled to account for the presence of the bounds [STIR].
  • For ‘dogbox’ : norm(g_free, ord=np.inf) < gtol, where g_free is the gradient with respect to the variables which are not in the optimal state on the boundary.
  • For ‘lm’ : the maximum absolute value of the cosine of angles between columns of the Jacobian and the residual vector is less than gtol, or the residual vector is zero.
x_scale : array_like or ‘jac’, optional

Characteristic scale of each variable. Setting x_scale is equivalent to reformulating the problem in scaled variables xs = x / x_scale. An alternative view is that the size of a trust region along j-th dimension is proportional to x_scale[j]. Improved convergence may be achieved by setting x_scale such that a step of a given size along any of the scaled variables has a similar effect on the cost function. If set to ‘jac’, the scale is iteratively updated using the inverse norms of the columns of the Jacobian matrix (as described in [JJMore]).

loss : str or callable, optional

Determines the loss function. The following keyword values are allowed:

  • ‘linear’ (default) : rho(z) = z. Gives a standard least-squares problem.
  • ‘soft_l1’ : rho(z) = 2 * ((1 + z)**0.5 - 1). The smooth approximation of l1 (absolute value) loss. Usually a good choice for robust least squares.
  • ‘huber’ : rho(z) = z if z <= 1 else 2*z**0.5 - 1. Works similarly to ‘soft_l1’.
  • ‘cauchy’ : rho(z) = ln(1 + z). Severely weakens outliers influence, but may cause difficulties in optimization process.
  • ‘arctan’ : rho(z) = arctan(z). Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.

If callable, it must take a 1-d ndarray z=f**2 and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Method ‘lm’ supports only ‘linear’ loss.

f_scale : float, optional

Value of soft margin between inlier and outlier residuals, default is 1.0. The loss function is evaluated as follows rho_(f**2) = C**2 * rho(f**2 / C**2), where C is f_scale, and rho is determined by loss parameter. This parameter has no effect with loss='linear', but for other loss values it is of crucial importance.

max_nfev : None or int, optional

Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically:

  • For ‘trf’ and ‘dogbox’ : 100 * n.
  • For ‘lm’ : 100 * n if jac is callable and 100 * n * (n + 1) otherwise (because ‘lm’ counts function calls in Jacobian estimation).
diff_step : None or array_like, optional

Determines the relative step size for the finite difference approximation of the Jacobian. The actual step is computed as x * diff_step. If None (default), then diff_step is taken to be a conventional “optimal” power of machine epsilon for the finite difference scheme used [NR].

tr_solver : {None, ‘exact’, ‘lsmr’}, optional

Method for solving trust-region subproblems, relevant only for ‘trf’ and ‘dogbox’ methods.

  • ‘exact’ is suitable for not very large problems with dense Jacobian matrices. The computational complexity per iteration is comparable to a singular value decomposition of the Jacobian matrix.
  • ‘lsmr’ is suitable for problems with sparse and large Jacobian matrices. It uses the iterative procedure scipy.sparse.linalg.lsmr for finding a solution of a linear least-squares problem and only requires matrix-vector product evaluations.

If None (default) the solver is chosen based on the type of Jacobian returned on the first iteration.

tr_options : dict, optional

Keyword options passed to trust-region solver.

  • tr_solver='exact': tr_options are ignored.
  • tr_solver='lsmr': options for scipy.sparse.linalg.lsmr. Additionally method='trf' supports ‘regularize’ option (bool, default is True) which adds a regularization term to the normal equation, which improves convergence if the Jacobian is rank-deficient [Byrd] (eq. 3.4).
jac_sparsity : {None, array_like, sparse matrix}, optional

Defines the sparsity structure of the Jacobian matrix for finite difference estimation, its shape must be (m, n). If the Jacobian has only few non-zero elements in each row, providing the sparsity structure will greatly speed up the computations [Curtis]. A zero entry means that a corresponding element in the Jacobian is identically zero. If provided, forces the use of ‘lsmr’ trust-region solver. If None (default) then dense differencing will be used. Has no effect for ‘lm’ method.

verbose : {0, 1, 2}, optional

Level of algorithm’s verbosity:

  • 0 (default) : work silently.
  • 1 : display a termination report.
  • 2 : display progress during iterations (not supported by ‘lm’ method).
args, kwargs : tuple and dict, optional

Additional arguments passed to fun and jac. Both empty by default. The calling signature is fun(x, *args, **kwargs) and the same for jac.

Returns:
`OptimizeResult` with the following fields defined:
x : ndarray, shape (n,)

Solution found.

cost : float

Value of the cost function at the solution.

fun : ndarray, shape (m,)

Vector of residuals at the solution.

jac : ndarray, sparse matrix or LinearOperator, shape (m, n)

Modified Jacobian matrix at the solution, in the sense that J^T J is a Gauss-Newton approximation of the Hessian of the cost function. The type is the same as the one used by the algorithm.

grad : ndarray, shape (m,)

Gradient of the cost function at the solution.

optimality : float

First-order optimality measure. In unconstrained problems, it is always the uniform norm of the gradient. In constrained problems, it is the quantity which was compared with gtol during iterations.

active_mask : ndarray of int, shape (n,)

Each component shows whether a corresponding constraint is active (that is, whether a variable is at the bound):

  • 0 : a constraint is not active.
  • -1 : a lower bound is active.
  • 1 : an upper bound is active.

Might be somewhat arbitrary for ‘trf’ method as it generates a sequence of strictly feasible iterates and active_mask is determined within a tolerance threshold.

nfev : int

Number of function evaluations done. Methods ‘trf’ and ‘dogbox’ do not count function calls for numerical Jacobian approximation, as opposed to ‘lm’ method.

njev : int or None

Number of Jacobian evaluations done. If numerical Jacobian approximation is used in ‘lm’ method, it is set to None.

status : int

The reason for algorithm termination:

  • -1 : improper input parameters status returned from MINPACK.
  • 0 : the maximum number of function evaluations is exceeded.
  • 1 : gtol termination condition is satisfied.
  • 2 : ftol termination condition is satisfied.
  • 3 : xtol termination condition is satisfied.
  • 4 : Both ftol and xtol termination conditions are satisfied.
message : str

Verbal description of the termination reason.

success : bool

True if one of the convergence criteria is satisfied (status > 0).

See also

leastsq
A legacy wrapper for the MINPACK implementation of the Levenberg-Marquadt algorithm.
curve_fit
Least-squares minimization applied to a curve fitting problem.

Notes

Method ‘lm’ (Levenberg-Marquardt) calls a wrapper over least-squares algorithms implemented in MINPACK (lmder, lmdif). It runs the Levenberg-Marquardt algorithm formulated as a trust-region type algorithm. The implementation is based on paper [JJMore], it is very robust and efficient with a lot of smart tricks. It should be your first choice for unconstrained problems. Note that it doesn’t support bounds. Also it doesn’t work when m < n.

Method ‘trf’ (Trust Region Reflective) is motivated by the process of solving a system of equations, which constitute the first-order optimality condition for a bound-constrained minimization problem as formulated in [STIR]. The algorithm iteratively solves trust-region subproblems augmented by a special diagonal quadratic term and with trust-region shape determined by the distance from the bounds and the direction of the gradient. This enhancements help to avoid making steps directly into bounds and efficiently explore the whole space of variables. To further improve convergence, the algorithm considers search directions reflected from the bounds. To obey theoretical requirements, the algorithm keeps iterates strictly feasible. With dense Jacobians trust-region subproblems are solved by an exact method very similar to the one described in [JJMore] (and implemented in MINPACK). The difference from the MINPACK implementation is that a singular value decomposition of a Jacobian matrix is done once per iteration, instead of a QR decomposition and series of Givens rotation eliminations. For large sparse Jacobians a 2-d subspace approach of solving trust-region subproblems is used [STIR], [Byrd]. The subspace is spanned by a scaled gradient and an approximate Gauss-Newton solution delivered by scipy.sparse.linalg.lsmr. When no constraints are imposed the algorithm is very similar to MINPACK and has generally comparable performance. The algorithm works quite robust in unbounded and bounded problems, thus it is chosen as a default algorithm.

Method ‘dogbox’ operates in a trust-region framework, but considers rectangular trust regions as opposed to conventional ellipsoids [Voglis]. The intersection of a current trust region and initial bounds is again rectangular, so on each iteration a quadratic minimization problem subject to bound constraints is solved approximately by Powell’s dogleg method [NumOpt]. The required Gauss-Newton step can be computed exactly for dense Jacobians or approximately by scipy.sparse.linalg.lsmr for large sparse Jacobians. The algorithm is likely to exhibit slow convergence when the rank of Jacobian is less than the number of variables. The algorithm often outperforms ‘trf’ in bounded problems with a small number of variables.

Robust loss functions are implemented as described in [BA]. The idea is to modify a residual vector and a Jacobian matrix on each iteration such that computed gradient and Gauss-Newton Hessian approximation match the true gradient and Hessian approximation of the cost function. Then the algorithm proceeds in a normal way, i.e. robust loss functions are implemented as a simple wrapper over standard least-squares algorithms.

New in version 0.17.0.

References

[STIR](1, 2, 3, 4) M. A. Branch, T. F. Coleman, and Y. Li, “A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems,” SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp 1-23, 1999.
[NR](1, 2) William H. Press et. al., “Numerical Recipes. The Art of Scientific Computing. 3rd edition”, Sec. 5.7.
[Byrd](1, 2, 3) R. H. Byrd, R. B. Schnabel and G. A. Shultz, “Approximate solution of the trust region problem by minimization over two-dimensional subspaces”, Math. Programming, 40, pp. 247-263, 1988.
[Curtis](1, 2) A. Curtis, M. J. D. Powell, and J. Reid, “On the estimation of sparse Jacobian matrices”, Journal of the Institute of Mathematics and its Applications, 13, pp. 117-120, 1974.
[JJMore](1, 2, 3, 4) J. J. More, “The Levenberg-Marquardt Algorithm: Implementation and Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
[Voglis](1, 2) C. Voglis and I. E. Lagaris, “A Rectangular Trust Region Dogleg Approach for Unconstrained and Bound Constrained Nonlinear Optimization”, WSEAS International Conference on Applied Mathematics, Corfu, Greece, 2004.
[NumOpt](1, 2) J. Nocedal and S. J. Wright, “Numerical optimization, 2nd edition”, Chapter 4.
[BA](1, 2) B. Triggs et. al., “Bundle Adjustment - A Modern Synthesis”, Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, pp. 298-372, 1999.

Examples

In this example we find a minimum of the Rosenbrock function without bounds on independent variables.

>>> def fun_rosenbrock(x):
...     return np.array([10 * (x[1] - x[0]**2), (1 - x[0])])

Notice that we only provide the vector of the residuals. The algorithm constructs the cost function as a sum of squares of the residuals, which gives the Rosenbrock function. The exact minimum is at x = [1.0, 1.0].

>>> from scipy.optimize import least_squares
>>> x0_rosenbrock = np.array([2, 2])
>>> res_1 = least_squares(fun_rosenbrock, x0_rosenbrock)
>>> res_1.x
array([ 1.,  1.])
>>> res_1.cost
9.8669242910846867e-30
>>> res_1.optimality
8.8928864934219529e-14

We now constrain the variables, in such a way that the previous solution becomes infeasible. Specifically, we require that x[1] >= 1.5, and x[0] left unconstrained. To this end, we specify the bounds parameter to least_squares in the form bounds=([-np.inf, 1.5], np.inf).

We also provide the analytic Jacobian:

>>> def jac_rosenbrock(x):
...     return np.array([
...         [-20 * x[0], 10],
...         [-1, 0]])

Putting this all together, we see that the new solution lies on the bound:

>>> res_2 = least_squares(fun_rosenbrock, x0_rosenbrock, jac_rosenbrock,
...                       bounds=([-np.inf, 1.5], np.inf))
>>> res_2.x
array([ 1.22437075,  1.5       ])
>>> res_2.cost
0.025213093946805685
>>> res_2.optimality
1.5885401433157753e-07

Now we solve a system of equations (i.e., the cost function should be zero at a minimum) for a Broyden tridiagonal vector-valued function of 100000 variables:

>>> def fun_broyden(x):
...     f = (3 - x) * x + 1
...     f[1:] -= x[:-1]
...     f[:-1] -= 2 * x[1:]
...     return f

The corresponding Jacobian matrix is sparse. We tell the algorithm to estimate it by finite differences and provide the sparsity structure of Jacobian to significantly speed up this process.

>>> from scipy.sparse import lil_matrix
>>> def sparsity_broyden(n):
...     sparsity = lil_matrix((n, n), dtype=int)
...     i = np.arange(n)
...     sparsity[i, i] = 1
...     i = np.arange(1, n)
...     sparsity[i, i - 1] = 1
...     i = np.arange(n - 1)
...     sparsity[i, i + 1] = 1
...     return sparsity
...
>>> n = 100000
>>> x0_broyden = -np.ones(n)
...
>>> res_3 = least_squares(fun_broyden, x0_broyden,
...                       jac_sparsity=sparsity_broyden(n))
>>> res_3.cost
4.5687069299604613e-23
>>> res_3.optimality
1.1650454296851518e-11

Let’s also solve a curve fitting problem using robust loss function to take care of outliers in the data. Define the model function as y = a + b * exp(c * t), where t is a predictor variable, y is an observation and a, b, c are parameters to estimate.

First, define the function which generates the data with noise and outliers, define the model parameters, and generate data:

>>> def gen_data(t, a, b, c, noise=0, n_outliers=0, random_state=0):
...     y = a + b * np.exp(t * c)
...
...     rnd = np.random.RandomState(random_state)
...     error = noise * rnd.randn(t.size)
...     outliers = rnd.randint(0, t.size, n_outliers)
...     error[outliers] *= 10
...
...     return y + error
...
>>> a = 0.5
>>> b = 2.0
>>> c = -1
>>> t_min = 0
>>> t_max = 10
>>> n_points = 15
...
>>> t_train = np.linspace(t_min, t_max, n_points)
>>> y_train = gen_data(t_train, a, b, c, noise=0.1, n_outliers=3)

Define function for computing residuals and initial estimate of parameters.

>>> def fun(x, t, y):
...     return x[0] + x[1] * np.exp(x[2] * t) - y
...
>>> x0 = np.array([1.0, 1.0, 0.0])

Compute a standard least-squares solution:

>>> res_lsq = least_squares(fun, x0, args=(t_train, y_train))

Now compute two solutions with two different robust loss functions. The parameter f_scale is set to 0.1, meaning that inlier residuals should not significantly exceed 0.1 (the noise level used).

>>> res_soft_l1 = least_squares(fun, x0, loss='soft_l1', f_scale=0.1,
...                             args=(t_train, y_train))
>>> res_log = least_squares(fun, x0, loss='cauchy', f_scale=0.1,
...                         args=(t_train, y_train))

And finally plot all the curves. We see that by selecting an appropriate loss we can get estimates close to optimal even in the presence of strong outliers. But keep in mind that generally it is recommended to try ‘soft_l1’ or ‘huber’ losses first (if at all necessary) as the other two options may cause difficulties in optimization process.

>>> t_test = np.linspace(t_min, t_max, n_points * 10)
>>> y_true = gen_data(t_test, a, b, c)
>>> y_lsq = gen_data(t_test, *res_lsq.x)
>>> y_soft_l1 = gen_data(t_test, *res_soft_l1.x)
>>> y_log = gen_data(t_test, *res_log.x)
...
>>> import matplotlib.pyplot as plt
>>> plt.plot(t_train, y_train, 'o')
>>> plt.plot(t_test, y_true, 'k', linewidth=2, label='true')
>>> plt.plot(t_test, y_lsq, label='linear loss')
>>> plt.plot(t_test, y_soft_l1, label='soft_l1 loss')
>>> plt.plot(t_test, y_log, label='cauchy loss')
>>> plt.xlabel("t")
>>> plt.ylabel("y")
>>> plt.legend()
>>> plt.show()

In the next example, we show how complex-valued residual functions of complex variables can be optimized with least_squares(). Consider the following function:

>>> def f(z):
...     return z - (0.5 + 0.5j)

We wrap it into a function of real variables that returns real residuals by simply handling the real and imaginary parts as independent variables:

>>> def f_wrap(x):
...     fx = f(x[0] + 1j*x[1])
...     return np.array([fx.real, fx.imag])

Thus, instead of the original m-dimensional complex function of n complex variables we optimize a 2m-dimensional real function of 2n real variables:

>>> from scipy.optimize import least_squares
>>> res_wrapped = least_squares(f_wrap, (0.1, 0.1), bounds=([0, 0], [1, 1]))
>>> z = res_wrapped.x[0] + res_wrapped.x[1]*1j
>>> z
(0.49999999999925893+0.49999999999925893j)

multi_voxel_fit

dipy.reconst.ivim.multi_voxel_fit(single_voxel_fit)

Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition

optional_package

dipy.reconst.ivim.optional_package(name, trip_msg=None)

Return package-like thing and module setup for package name

Parameters:
name : str

package name

trip_msg : None or str

message to give when someone tries to use the return package, but we could not import it, and have returned a TripWire object instead. Default message if None.

Returns:
pkg_like : module or TripWire instance

If we can import the package, return it. Otherwise return an object raising an error when accessed

have_pkg : bool

True if import for package was successful, false otherwise

module_setup : function

callable usually set as setup_module in calling namespace, to allow skipping tests.

Cache

class dipy.reconst.mapmri.Cache

Bases: object

Cache values based on a key object (such as a sphere or gradient table).

Notes

This class is meant to be used as a mix-in:

class MyModel(Model, Cache):
    pass

class MyModelFit(Fit):
    pass

Inside a method on the fit, typical usage would be:

def odf(sphere):
    M = self.model.cache_get('odf_basis_matrix', key=sphere)

    if M is None:
        M = self._compute_basis_matrix(sphere)
        self.model.cache_set('odf_basis_matrix', key=sphere, value=M)

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

cache_clear()

Clear the cache.

cache_get(tag, key, default=None)

Retrieve a value from the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

default : object

Value to be returned if no cached entry is found.

Returns:
v : object

Value from the cache associated with (tag, key). Returns default if no cached entry is found.

cache_set(tag, key, value)

Store a value in the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

value : object

Value stored in the cache for each unique combination of (tag, key).

Examples

>>> def compute_expensive_matrix(parameters):
...     # Imagine the following computation is very expensive
...     return (p**2 for p in parameters)
>>> c = Cache()
>>> parameters = (1, 2, 3)
>>> X1 = compute_expensive_matrix(parameters)
>>> c.cache_set('expensive_matrix', parameters, X1)
>>> X2 = c.cache_get('expensive_matrix', parameters)
>>> X1 is X2
True

MapmriFit

class dipy.reconst.mapmri.MapmriFit(model, mapmri_coef, mu, R, lopt, errorcode=0)

Bases: dipy.reconst.base.ReconstFit

Attributes:
mapmri_R

The MAPMRI rotation matrix

mapmri_coeff

The MAPMRI coefficients

mapmri_mu

The MAPMRI scale factors

Methods

fitted_signal([gtab]) Recovers the fitted signal for the given gradient table.
msd() Calculates the analytical Mean Squared Displacement (MSD).
ng() Calculates the analytical non-Gaussiannity (NG) [1].
ng_parallel() Calculates the analytical parallel non-Gaussiannity (NG) [1].
ng_perpendicular() Calculates the analytical perpendicular non-Gaussiannity (NG) [1].
norm_of_laplacian_signal() Calculates the norm of the laplacian of the fitted signal [Rf7f23918a7e7-1].
odf(sphere[, s]) Calculates the analytical Orientation Distribution Function (ODF) from the signal [1] Eq.
odf_sh([s]) Calculates the real analytical odf for a given discrete sphere.
pdf(r_points) Diffusion propagator on a given set of real points.
predict(qvals_or_gtab[, S0]) Recovers the reconstructed signal for any qvalue array or gradient table.
qiv() Calculates the analytical Q-space Inverse Variance (QIV).
rtap() Calculates the analytical return to the axis probability (RTAP) [1] eq.
rtop() Calculates the analytical return to the origin probability (RTOP) [1] eq.
rtpp() Calculates the analytical return to the plane probability (RTPP) [1] eq.
__init__(model, mapmri_coef, mu, R, lopt, errorcode=0)

Calculates diffusion properties for a single voxel

Parameters:
model : object,

AnalyticalModel

mapmri_coef : 1d ndarray,

mapmri coefficients

mu : array, shape (3,)

scale parameters vector for x, y and z

R : array, shape (3,3)

rotation matrix

lopt : float,

regularization weight used for laplacian regularization

errorcode : int

provides information on whether errors occurred in the fitting of each voxel. 0 means no problem, 1 means a LinAlgError occurred when trying to invert the design matrix. 2 means the positivity constraint was unable to solve the problem. 3 means that after positivity constraint failed, also matrix inversion failed.

fitted_signal(gtab=None)

Recovers the fitted signal for the given gradient table. If no gradient table is given it recovers the signal for the gtab of the model object.

mapmri_R

The MAPMRI rotation matrix

mapmri_coeff

The MAPMRI coefficients

mapmri_mu

The MAPMRI scale factors

msd()

Calculates the analytical Mean Squared Displacement (MSD). It is defined as the Laplacian of the origin of the estimated signal [1]. The analytical formula for the MAP-MRI basis was derived in [R53ed4361a122-2] eq. (C13, D1).

References

[1](1, 2) Cheng, J., 2014. Estimation and Processing of Ensemble Average

Propagator and Its Features in Diffusion MRI. Ph.D. Thesis.

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

ng()

Calculates the analytical non-Gaussiannity (NG) [1]. For the NG to be meaningful the mapmri scale factors must be estimated only on data representing Gaussian diffusion of spins, i.e., bvals smaller than about 2000 s/mm^2 [2].

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

[2](1, 2) Avram et al. “Clinical feasibility of using mean apparent

propagator (MAP) MRI to characterize brain tissue microstructure”. NeuroImage 2015, in press.

ng_parallel()

Calculates the analytical parallel non-Gaussiannity (NG) [1]. For the NG to be meaningful the mapmri scale factors must be estimated only on data representing Gaussian diffusion of spins, i.e., bvals smaller than about 2000 s/mm^2 [2].

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

[2](1, 2) Avram et al. “Clinical feasibility of using mean apparent

propagator (MAP) MRI to characterize brain tissue microstructure”. NeuroImage 2015, in press.

ng_perpendicular()

Calculates the analytical perpendicular non-Gaussiannity (NG) [1]. For the NG to be meaningful the mapmri scale factors must be estimated only on data representing Gaussian diffusion of spins, i.e., bvals smaller than about 2000 s/mm^2 [2].

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

[2](1, 2) Avram et al. “Clinical feasibility of using mean apparent

propagator (MAP) MRI to characterize brain tissue microstructure”. NeuroImage 2015, in press.

norm_of_laplacian_signal()

Calculates the norm of the laplacian of the fitted signal [Rf7f23918a7e7-1]. This information could be useful to assess if the extrapolation of the fitted signal contains spurious oscillations. A high laplacian may indicate that these are present, and any q-space indices that use integrals of the signal may be corrupted (e.g. RTOP, RTAP, RTPP, QIV).

References

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

odf(sphere, s=2)

Calculates the analytical Orientation Distribution Function (ODF) from the signal [1] Eq. (32).

Parameters:
s : unsigned int

radial moment of the ODF

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

odf_sh(s=2)

Calculates the real analytical odf for a given discrete sphere. Computes the design matrix of the ODF for the given sphere vertices and radial moment [1] eq. (32). The radial moment s acts as a sharpening method. The analytical equation for the spherical ODF basis is given in [2]_ eq. (C8).

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

pdf(r_points)

Diffusion propagator on a given set of real points. if the array r_points is non writeable, then intermediate results are cached for faster recalculation

predict(qvals_or_gtab, S0=100.0)

Recovers the reconstructed signal for any qvalue array or gradient table.

qiv()

Calculates the analytical Q-space Inverse Variance (QIV). It is defined as the inverse of the Laplacian of the origin of the estimated propagator [1] eq. (22). The analytical formula for the MAP-MRI basis was derived in [Rd3765a80e128-2] eq. (C14, D2).

References

[1](1, 2) Hosseinbor et al. “Bessel fourier orientation reconstruction

(bfor): An analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q-space indices. NeuroImage 64, 2013, 650-670.

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

rtap()

Calculates the analytical return to the axis probability (RTAP) [1] eq. (40, 44a). The analytical formula for the isotropic MAP-MRI basis was derived in [R6f4b363492da-2] eq. (C11).

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

rtop()

Calculates the analytical return to the origin probability (RTOP) [1] eq. (36, 43). The analytical formula for the isotropic MAP-MRI basis was derived in [Re6f1062fb760-2] eq. (C11).

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

rtpp()

Calculates the analytical return to the plane probability (RTPP) [1] eq. (42). The analytical formula for the isotropic MAP-MRI basis was derived in [Rf9cced748cc9-2] eq. (C11).

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

MapmriModel

class dipy.reconst.mapmri.MapmriModel(gtab, radial_order=6, laplacian_regularization=True, laplacian_weighting=0.2, positivity_constraint=False, pos_grid=15, pos_radius='adaptive', anisotropic_scaling=True, eigenvalue_threshold=0.0001, bval_threshold=inf, dti_scale_estimation=True, static_diffusivity=0.0007, cvxpy_solver=None)

Bases: dipy.reconst.base.ReconstModel, dipy.reconst.cache.Cache

Mean Apparent Propagator MRI (MAPMRI) [1] of the diffusion signal.

The main idea is to model the diffusion signal as a linear combination of the continuous functions presented in [2] but extending it in three dimensions. The main difference with the SHORE proposed in [3] is that MAPMRI 3D extension is provided using a set of three basis functions for the radial part, one for the signal along x, one for y and one for z, while [3] uses one basis function to model the radial part and real Spherical Harmonics to model the angular part. From the MAPMRI coefficients is possible to use the analytical formulae to estimate the ODF.

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.
[2](1, 2) Ozarslan E. et al., “Simple harmonic oscillator based reconstruction and estimation for one-dimensional q-space magnetic resonance 1D-SHORE)”, eapoc Intl Soc Mag Reson Med, vol. 16, p. 35., 2008.
[3](1, 2, 3) Merlet S. et al., “Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI”, Medical Image Analysis, 2013.
[4]Fick, Rutger HJ, et al. “MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).
[5]Cheng, J., 2014. Estimation and Processing of Ensemble Average Propagator and Its Features in Diffusion MRI. Ph.D. Thesis.
[6]Hosseinbor et al. “Bessel fourier orientation reconstruction (bfor): An analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q-space indices”. NeuroImage 64, 2013, 650-670.
[7]Craven et al. “Smoothing Noisy Data with Spline Functions.” NUMER MATH 31.4 (1978): 377-403.
[8]Avram et al. “Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure”. NeuroImage 2015, in press.

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fit method for every voxel in data
__init__(gtab, radial_order=6, laplacian_regularization=True, laplacian_weighting=0.2, positivity_constraint=False, pos_grid=15, pos_radius='adaptive', anisotropic_scaling=True, eigenvalue_threshold=0.0001, bval_threshold=inf, dti_scale_estimation=True, static_diffusivity=0.0007, cvxpy_solver=None)

Analytical and continuous modeling of the diffusion signal with respect to the MAPMRI basis [1].

The main idea is to model the diffusion signal as a linear combination of the continuous functions presented in [2] but extending it in three dimensions.

The main difference with the SHORE proposed in [3] is that MAPMRI 3D extension is provided using a set of three basis functions for the radial part, one for the signal along x, one for y and one for z, while [3] uses one basis function to model the radial part and real Spherical Harmonics to model the angular part.

From the MAPMRI coefficients it is possible to estimate various q-space indices, the PDF and the ODF.

The fitting procedure can be constrained using the positivity constraint proposed in [1] and/or the laplacian regularization proposed in [4].

For the estimation of q-space indices we recommend using the ‘regular’ anisotropic implementation of MAPMRI. However, it has been shown that the ODF estimation in this implementation has a bias which ‘squeezes together’ the ODF peaks when there is a crossing at an angle smaller than 90 degrees [4]. When you want to estimate ODFs for tractography we therefore recommend using the isotropic implementation (which is equivalent to [3]).

The switch between isotropic and anisotropic can be easily made through the anisotropic_scaling option.

Parameters:
gtab : GradientTable,

gradient directions and bvalues container class. the gradient table has to include b0-images.

radial_order : unsigned int,

an even integer that represent the order of the basis

laplacian_regularization: bool,

Regularize using the Laplacian of the MAP-MRI basis.

laplacian_weighting: string or scalar,

The string ‘GCV’ makes it use generalized cross-validation to find the regularization weight [4]. A scalar sets the regularization weight to that value and an array will make it selected the optimal weight from the values in the array.

positivity_constraint : bool,

Constrain the propagator to be positive.

pos_grid : integer,

The number of points in the grid that is used in the positivity constraint.

pos_radius : float or string,

If set to a float, the maximum distance the the positivity constraint constrains to posivity is that value. If set to `adaptive’, the maximum distance is dependent on the estimated tissue diffusivity.

anisotropic_scaling : bool,

If True, uses the standard anisotropic MAP-MRI basis. If False, uses the isotropic MAP-MRI basis (equal to 3D-SHORE).

eigenvalue_threshold : float,

Sets the minimum of the tensor eigenvalues in order to avoid stability problem.

bval_threshold : float,

Sets the b-value threshold to be used in the scale factor estimation. In order for the estimated non-Gaussianity to have meaning this value should set to a lower value (b<2000 s/mm^2) such that the scale factors are estimated on signal points that reasonably represent the spins at Gaussian diffusion.

dti_scale_estimation : bool,

Whether or not DTI fitting is used to estimate the isotropic scale factor for isotropic MAP-MRI. When set to False the algorithm presets the isotropic tissue diffusivity to static_diffusivity. This vastly increases fitting speed but at the cost of slightly reduced fitting quality. Can still be used in combination with regularization and constraints.

static_diffusivity : float,

the tissue diffusivity that is used when dti_scale_estimation is set to False. The default is that of typical white matter D=0.7e-3 _[5].

cvxpy_solver : str, optional

cvxpy solver name. Optionally optimize the positivity constraint with a particular cvxpy solver. See http://www.cvxpy.org/ for details. Default: None (cvxpy chooses its own solver)

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.
[2](1, 2) Ozarslan E. et al., “Simple harmonic oscillator based reconstruction and estimation for one-dimensional q-space magnetic resonance 1D-SHORE)”, Proc Intl Soc Mag Reson Med, vol. 16, p. 35., 2008.
[3](1, 2, 3, 4) Ozarslan E. et al., “Simple harmonic oscillator based reconstruction and estimation for three-dimensional q-space mri”, ISMRM 2009.
[4](1, 2, 3) Fick, Rutger HJ, et al. “MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).
[5]Merlet S. et al., “Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI”, Medical Image Analysis, 2013.

Examples

In this example, where the data, gradient table and sphere tessellation used for reconstruction are provided, we model the diffusion signal with respect to the SHORE basis and compute the real and analytical ODF.

>>> from dipy.data import dsi_voxels, get_sphere
>>> from dipy.core.gradients import gradient_table
>>> _, gtab_ = dsi_voxels()
>>> gtab = gradient_table(gtab_.bvals, gtab_.bvecs,
...                       b0_threshold=gtab_.bvals.min())
>>> from dipy.sims.voxel import SticksAndBall
>>> data, golden_directions = SticksAndBall(
...                                     gtab, d=0.0015,
...                                     S0=1, angles=[(0, 0), (90, 0)],
...                                     fractions=[50, 50], snr=None)
>>> from dipy.reconst.mapmri import MapmriModel
>>> radial_order = 4
>>> map_model = MapmriModel(gtab, radial_order=radial_order)
>>> mapfit = map_model.fit(data)
>>> sphere = get_sphere('symmetric724')
>>> odf = mapfit.odf(sphere)
fit(data, mask=None)

Fit method for every voxel in data

Optimizer

class dipy.reconst.mapmri.Optimizer(fun, x0, args=(), method='L-BFGS-B', jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None, evolution=False)

Bases: object

Attributes:
evolution
fopt
message
nfev
nit
xopt

Methods

print_summary  
__init__(fun, x0, args=(), method='L-BFGS-B', jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None, evolution=False)

A class for handling minimization of scalar function of one or more variables.

Parameters:
fun : callable

Objective function.

x0 : ndarray

Initial guess.

args : tuple, optional

Extra arguments passed to the objective function and its derivatives (Jacobian, Hessian).

method : str, optional

Type of solver. Should be one of

  • ‘Nelder-Mead’
  • ‘Powell’
  • ‘CG’
  • ‘BFGS’
  • ‘Newton-CG’
  • ‘Anneal’
  • ‘L-BFGS-B’
  • ‘TNC’
  • ‘COBYLA’
  • ‘SLSQP’
  • ‘dogleg’
  • ‘trust-ncg’
jac : bool or callable, optional

Jacobian of objective function. Only for CG, BFGS, Newton-CG, dogleg, trust-ncg. If jac is a Boolean and is True, fun is assumed to return the value of Jacobian along with the objective function. If False, the Jacobian will be estimated numerically. jac can also be a callable returning the Jacobian of the objective. In this case, it must accept the same arguments as fun.

hess, hessp : callable, optional

Hessian of objective function or Hessian of objective function times an arbitrary vector p. Only for Newton-CG, dogleg, trust-ncg. Only one of hessp or hess needs to be given. If hess is provided, then hessp will be ignored. If neither hess nor hessp is provided, then the hessian product will be approximated using finite differences on jac. hessp must compute the Hessian times an arbitrary vector.

bounds : sequence, optional

Bounds for variables (only for L-BFGS-B, TNC and SLSQP). (min, max) pairs for each element in x, defining the bounds on that parameter. Use None for one of min or max when there is no bound in that direction.

constraints : dict or sequence of dict, optional

Constraints definition (only for COBYLA and SLSQP). Each constraint is defined in a dictionary with fields:

type : str

Constraint type: ‘eq’ for equality, ‘ineq’ for inequality.

fun : callable

The function defining the constraint.

jac : callable, optional

The Jacobian of fun (only for SLSQP).

args : sequence, optional

Extra arguments to be passed to the function and Jacobian.

Equality constraint means that the constraint function result is to be zero whereas inequality means that it is to be non-negative. Note that COBYLA only supports inequality constraints.

tol : float, optional

Tolerance for termination. For detailed control, use solver-specific options.

callback : callable, optional

Called after each iteration, as callback(xk), where xk is the current parameter vector. Only available using Scipy >= 0.12.

options : dict, optional

A dictionary of solver options. All methods accept the following generic options:

maxiter : int

Maximum number of iterations to perform.

disp : bool

Set to True to print convergence messages.

For method-specific options, see show_options(‘minimize’, method).

evolution : bool, optional

save history of x for each iteration. Only available using Scipy >= 0.12.

See also

scipy.optimize.minimize

evolution
fopt
message
nfev
nit
print_summary()
xopt

ReconstFit

class dipy.reconst.mapmri.ReconstFit(model, data)

Bases: object

Abstract class which holds the fit result of ReconstModel

For example that could be holding FA or GFA etc.

__init__(model, data)

Initialize self. See help(type(self)) for accurate signature.

ReconstModel

class dipy.reconst.mapmri.ReconstModel(gtab)

Bases: object

Abstract class for signal reconstruction models

Methods

fit  
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data, mask=None, **kwargs)

b_mat

dipy.reconst.mapmri.b_mat(index_matrix)

Calculates the B coefficients from [1] Eq. (27).

Parameters:
index_matrix : array, shape (N,3)

ordering of the basis in x, y, z

Returns:
B : array, shape (N,)

B coefficients for the basis

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

b_mat_isotropic

dipy.reconst.mapmri.b_mat_isotropic(index_matrix)

Calculates the isotropic B coefficients from [1] Fig 8.

Parameters:
index_matrix : array, shape (N,3)

ordering of the isotropic basis in j, l, m

Returns:
B : array, shape (N,)

B coefficients for the isotropic basis

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

binomialfloat

dipy.reconst.mapmri.binomialfloat(n, k)

Custom Binomial function

cart2sphere

dipy.reconst.mapmri.cart2sphere(x, y, z)

Return angles for Cartesian 3D coordinates x, y, and z

See doc for sphere2cart for angle conventions and derivation of the formulae.

\(0\le\theta\mathrm{(theta)}\le\pi\) and \(-\pi\le\phi\mathrm{(phi)}\le\pi\)

Parameters:
x : array_like

x coordinate in Cartesian space

y : array_like

y coordinate in Cartesian space

z : array_like

z coordinate

Returns:
r : array

radius

theta : array

inclination (polar) angle

phi : array

azimuth angle

create_rspace

dipy.reconst.mapmri.create_rspace(gridsize, radius_max)

Create the real space table, that contains the points in which to compute the pdf.

Parameters:
gridsize : unsigned int

dimension of the propagator grid

radius_max : float

maximal radius in which compute the propagator

Returns:
tab : array, shape (N,3)

real space points in which calculates the pdf

delta

dipy.reconst.mapmri.delta(n, m)

factorial2

dipy.reconst.mapmri.factorial2(n, exact=False)

Double factorial.

This is the factorial with every second value skipped. E.g., 7!! = 7 * 5 * 3 * 1. It can be approximated numerically as:

n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi)  n odd
    = 2**(n/2) * (n/2)!                           n even
Parameters:
n : int or array_like

Calculate n!!. Arrays are only supported with exact set to False. If n < 0, the return value is 0.

exact : bool, optional

The result can be approximated rapidly using the gamma-formula above (default). If exact is set to True, calculate the answer exactly using integer arithmetic.

Returns:
nff : float or int

Double factorial of n, as an int or a float depending on exact.

Examples

>>> from scipy.special import factorial2
>>> factorial2(7, exact=False)
array(105.00000000000001)
>>> factorial2(7, exact=True)
105L

gcv_cost_function

dipy.reconst.mapmri.gcv_cost_function(weight, args)

The GCV cost function that is iterated [4]

generalized_crossvalidation

dipy.reconst.mapmri.generalized_crossvalidation(data, M, LR, gcv_startpoint=0.05)

Generalized Cross Validation Function [Rb690cd738504-1] eq. (15). Finds optimal regularization weight based on generalized cross-validation.

Parameters:
data : array (N),

data array

M : matrix, shape (N, Ncoef)

mapmri observation matrix

LR : matrix, shape (N_coef, N_coef)

regularization matrix

gcv_startpoint : float

startpoint for the gcv optimization

Returns:
optimal_lambda : float,

optimal regularization weight

References

generalized_crossvalidation_array

dipy.reconst.mapmri.generalized_crossvalidation_array(data, M, LR, weights_array=None)

Generalized Cross Validation Function [1] eq. (15). Here weights_array is a numpy array with all values that should be considered in the GCV. It will run through the weights until the cost function starts to increase, then stop and take the last value as the optimum weight.

Parameters:
data : array (N),

Basis order matrix

M : matrix, shape (N, Ncoef)

mapmri observation matrix

LR : matrix, shape (N_coef, N_coef)

regularization matrix

weights_array : array (N_of_weights)

array of optional regularization weights

genlaguerre

dipy.reconst.mapmri.genlaguerre(n, alpha, monic=False)

Generalized (associated) Laguerre polynomial.

Defined to be the solution of

\[x\frac{d^2}{dx^2}L_n^{(\alpha)} + (\alpha + 1 - x)\frac{d}{dx}L_n^{(\alpha)} + nL_n^{(\alpha)} = 0,\]

where \(\alpha > -1\); \(L_n^{(\alpha)}\) is a polynomial of degree \(n\).

Parameters:
n : int

Degree of the polynomial.

alpha : float

Parameter, must be greater than -1.

monic : bool, optional

If True, scale the leading coefficient to be 1. Default is False.

Returns:
L : orthopoly1d

Generalized Laguerre polynomial.

See also

laguerre
Laguerre polynomial.

Notes

For fixed \(\alpha\), the polynomials \(L_n^{(\alpha)}\) are orthogonal over \([0, \infty)\) with weight function \(e^{-x}x^\alpha\).

The Laguerre polynomials are the special case where \(\alpha = 0\).

gradient_table

dipy.reconst.mapmri.gradient_table(bvals, bvecs=None, big_delta=None, small_delta=None, b0_threshold=50, atol=0.01)

A general function for creating diffusion MR gradients.

It reads, loads and prepares scanner parameters like the b-values and b-vectors so that they can be useful during the reconstruction process.

Parameters:
bvals : can be any of the four options
  1. an array of shape (N,) or (1, N) or (N, 1) with the b-values.
  2. a path for the file which contains an array like the above (1).
  3. an array of shape (N, 4) or (4, N). Then this parameter is considered to be a b-table which contains both bvals and bvecs. In this case the next parameter is skipped.
  4. a path for the file which contains an array like the one at (3).
bvecs : can be any of two options
  1. an array of shape (N, 3) or (3, N) with the b-vectors.
  2. a path for the file which contains an array like the previous.
big_delta : float

acquisition pulse separation time in seconds (default None)

small_delta : float

acquisition pulse duration time in seconds (default None)

b0_threshold : float

All b-values with values less than or equal to bo_threshold are considered as b0s i.e. without diffusion weighting.

atol : float

All b-vectors need to be unit vectors up to a tolerance.

Returns:
gradients : GradientTable

A GradientTable with all the gradient information.

Notes

  1. Often b0s (b-values which correspond to images without diffusion weighting) have 0 values however in some cases the scanner cannot provide b0s of an exact 0 value and it gives a bit higher values e.g. 6 or 12. This is the purpose of the b0_threshold in the __init__.
  2. We assume that the minimum number of b-values is 7.
  3. B-vectors should be unit vectors.

Examples

>>> from dipy.core.gradients import gradient_table
>>> bvals = 1500 * np.ones(7)
>>> bvals[0] = 0
>>> sq2 = np.sqrt(2) / 2
>>> bvecs = np.array([[0, 0, 0],
...                   [1, 0, 0],
...                   [0, 1, 0],
...                   [0, 0, 1],
...                   [sq2, sq2, 0],
...                   [sq2, 0, sq2],
...                   [0, sq2, sq2]])
>>> gt = gradient_table(bvals, bvecs)
>>> gt.bvecs.shape == bvecs.shape
True
>>> gt = gradient_table(bvals, bvecs.T)
>>> gt.bvecs.shape == bvecs.T.shape
False

hermite

dipy.reconst.mapmri.hermite(n, monic=False)

Physicist’s Hermite polynomial.

Defined by

\[H_n(x) = (-1)^ne^{x^2}\frac{d^n}{dx^n}e^{-x^2};\]

\(H_n\) is a polynomial of degree \(n\).

Parameters:
n : int

Degree of the polynomial.

monic : bool, optional

If True, scale the leading coefficient to be 1. Default is False.

Returns:
H : orthopoly1d

Hermite polynomial.

Notes

The polynomials \(H_n\) are orthogonal over \((-\infty, \infty)\) with weight function \(e^{-x^2}\).

isotropic_scale_factor

dipy.reconst.mapmri.isotropic_scale_factor(mu_squared)

Estimated isotropic scaling factor _[1] Eq. (49).

Parameters:
mu_squared : array, shape (N,3)

squared scale factors of mapmri basis in x, y, z

Returns:
u0 : float

closest isotropic scale factor for the isotropic basis

References

[1]Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

map_laplace_s

dipy.reconst.mapmri.map_laplace_s(n, m)

R(m,n) static matrix for Laplacian regularization [R932dd40ca52e-1] eq. (11). Parameters ———- n, m : unsigned int

basis order of the MAP-MRI basis in different directions
Returns:
S : float

Analytical integral of \(\phi_n''(q) * \phi_m''(q)\)

References

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

map_laplace_t

dipy.reconst.mapmri.map_laplace_t(n, m)

L(m, n) static matrix for Laplacian regularization [Reb78d789d6c4-1] eq. (12). Parameters ———- n, m : unsigned int

basis order of the MAP-MRI basis in different directions
Returns:
T : float

Analytical integral of \(\phi_n(q) * \phi_m''(q)\)

References

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

map_laplace_u

dipy.reconst.mapmri.map_laplace_u(n, m)

S(n, m) static matrix for Laplacian regularization [Rb93dd9dab8c9-1] eq. (13). Parameters ———- n, m : unsigned int

basis order of the MAP-MRI basis in different directions
Returns:
U : float,

Analytical integral of \(\phi_n(q) * \phi_m(q)\)

References

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

mapmri_STU_reg_matrices

dipy.reconst.mapmri.mapmri_STU_reg_matrices(radial_order)

Generates the static portions of the Laplacian regularization matrix according to [R1d585103467a-1] eq. (11, 12, 13).

Parameters:
radial_order : unsigned int,

an even integer that represent the order of the basis

Returns:
S, T, U : Matrices, shape (N_coef,N_coef)

Regularization submatrices

References

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

mapmri_index_matrix

dipy.reconst.mapmri.mapmri_index_matrix(radial_order)

Calculates the indices for the MAPMRI [1] basis in x, y and z.

Parameters:
radial_order : unsigned int

radial order of MAPMRI basis

Returns:
index_matrix : array, shape (N,3)

ordering of the basis in x, y, z

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

mapmri_isotropic_K_mu_dependent

dipy.reconst.mapmri.mapmri_isotropic_K_mu_dependent(radial_order, mu, rgrad)

Computes mu dependent part of M. Same trick as with M.

mapmri_isotropic_K_mu_independent

dipy.reconst.mapmri.mapmri_isotropic_K_mu_independent(radial_order, rgrad)

Computes mu independent part of K. Same trick as with M.

mapmri_isotropic_M_mu_dependent

dipy.reconst.mapmri.mapmri_isotropic_M_mu_dependent(radial_order, mu, qval)

Computed the mu dependent part of the signal design matrix.

mapmri_isotropic_M_mu_independent

dipy.reconst.mapmri.mapmri_isotropic_M_mu_independent(radial_order, q)

Computed the mu independent part of the signal design matrix.

mapmri_isotropic_index_matrix

dipy.reconst.mapmri.mapmri_isotropic_index_matrix(radial_order)

Calculates the indices for the isotropic MAPMRI basis [1] Fig 8.

Parameters:
radial_order : unsigned int

radial order of isotropic MAPMRI basis

Returns:
index_matrix : array, shape (N,3)

ordering of the basis in x, y, z

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

mapmri_isotropic_laplacian_reg_matrix

dipy.reconst.mapmri.mapmri_isotropic_laplacian_reg_matrix(radial_order, mu)

Computes the Laplacian regularization matrix for MAP-MRI’s isotropic implementation [R156f27ca005f-1] eq. (C7).

Parameters:
radial_order : unsigned int,

an even integer that represent the order of the basis

mu : float,

isotropic scale factor of the isotropic MAP-MRI basis

Returns:
LR : Matrix, shape (N_coef, N_coef)

Laplacian regularization matrix

References

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

mapmri_isotropic_laplacian_reg_matrix_from_index_matrix

dipy.reconst.mapmri.mapmri_isotropic_laplacian_reg_matrix_from_index_matrix(ind_mat, mu)

Computes the Laplacian regularization matrix for MAP-MRI’s isotropic implementation [Rdcc29394f577-1] eq. (C7).

Parameters:
ind_mat : matrix (N_coef, 3),

Basis order matrix

mu : float,

isotropic scale factor of the isotropic MAP-MRI basis

Returns:
LR : Matrix, shape (N_coef, N_coef)

Laplacian regularization matrix

References

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

mapmri_isotropic_odf_matrix

dipy.reconst.mapmri.mapmri_isotropic_odf_matrix(radial_order, mu, s, vertices)

Compute the isotropic MAPMRI ODF matrix [1] Eq. 32 but for the isotropic propagator in [1] eq. (60). Analytical derivation in [Rf7e027186c88-2] eq. (C8).

Parameters:
radial_order : unsigned int,

an even integer that represent the order of the basis

mu : float,

isotropic scale factor of the isotropic MAP-MRI basis

s : unsigned int

radial moment of the ODF

vertices : array, shape (N,3)

points of the sphere shell in the r-space in which evaluate the ODF

Returns:
odf_mat : Matrix, shape (N_vertices, N_mapmri_coef)

ODF design matrix to discrete sphere function

References

[1](1, 2, 3, 4) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

mapmri_isotropic_odf_sh_matrix

dipy.reconst.mapmri.mapmri_isotropic_odf_sh_matrix(radial_order, mu, s)

Compute the isotropic MAPMRI ODF matrix [1] Eq. 32 for the isotropic propagator in [1] eq. (60). Here we do not compute the sphere function but the spherical harmonics by only integrating the radial part of the propagator. We use the same derivation of the ODF in the isotropic implementation as in [R18e181ea8d0c-2] eq. (C8).

Parameters:
radial_order : unsigned int,

an even integer that represent the order of the basis

mu : float,

isotropic scale factor of the isotropic MAP-MRI basis

s : unsigned int

radial moment of the ODF

Returns:
odf_sh_mat : Matrix, shape (N_sh_coef, N_mapmri_coef)

ODF design matrix to spherical harmonics

References

[1](1, 2, 3, 4) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

mapmri_isotropic_phi_matrix

dipy.reconst.mapmri.mapmri_isotropic_phi_matrix(radial_order, mu, q)

Three dimensional isotropic MAPMRI signal basis function from [1] Eq. (61).

Parameters:
radial_order : unsigned int,

radial order of the mapmri basis.

mu : float,

positive isotropic scale factor of the basis

q : array, shape (N,3)

points in the q-space in which evaluate the basis

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

mapmri_isotropic_psi_matrix

dipy.reconst.mapmri.mapmri_isotropic_psi_matrix(radial_order, mu, rgrad)

Three dimensional isotropic MAPMRI propagator basis function from [1] Eq. (61).

Parameters:
radial_order : unsigned int,

radial order of the mapmri basis.

mu : float,

positive isotropic scale factor of the basis

rgrad : array, shape (N,3)

points in the r-space in which evaluate the basis

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

mapmri_isotropic_radial_pdf_basis

dipy.reconst.mapmri.mapmri_isotropic_radial_pdf_basis(j, l, mu, r)

Radial part of the isotropic 1D-SHORE propagator basis [1] eq. (61).

Parameters:
j : unsigned int,

a positive integer related to the radial order

l : unsigned int,

the spherical harmonic order

mu : float,

isotropic scale factor of the basis

r : float,

points in the r-space in which evaluate the basis

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

mapmri_isotropic_radial_signal_basis

dipy.reconst.mapmri.mapmri_isotropic_radial_signal_basis(j, l, mu, qval)

Radial part of the isotropic 1D-SHORE signal basis [1] eq. (61).

Parameters:
j : unsigned int,

a positive integer related to the radial order

l : unsigned int,

the spherical harmonic order

mu : float,

isotropic scale factor of the basis

qval : float,

points in the q-space in which evaluate the basis

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

mapmri_laplacian_reg_matrix

dipy.reconst.mapmri.mapmri_laplacian_reg_matrix(ind_mat, mu, S_mat, T_mat, U_mat)

Puts the Laplacian regularization matrix together [Rc66aaccd07c1-1] eq. (10). The static parts in S, T and U are multiplied and divided by the voxel-specific scale factors.

Parameters:
ind_mat : matrix (N_coef, 3),

Basis order matrix

mu : array, shape (3,)

scale factors of the basis for x, y, z

S, T, U : matrices, shape (N_coef,N_coef)

Regularization submatrices

Returns:
LR : matrix (N_coef, N_coef),

Voxel-specific Laplacian regularization matrix

References

using Laplacian-regularized MAP-MRI and its application to HCP data.” NeuroImage (2016).

mapmri_odf_matrix

dipy.reconst.mapmri.mapmri_odf_matrix(radial_order, mu, s, vertices)

Compute the MAPMRI ODF matrix [1] Eq. (33).

Parameters:
radial_order : unsigned int,

an even integer that represent the order of the basis

mu : array, shape (3,)

scale factors of the basis for x, y, z

s : unsigned int

radial moment of the ODF

vertices : array, shape (N,3)

points of the sphere shell in the r-space in which evaluate the ODF

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

mapmri_phi_1d

dipy.reconst.mapmri.mapmri_phi_1d(n, q, mu)

One dimensional MAPMRI basis function from [1] Eq. (4).

n : unsigned int
order of the basis
q : array, shape (N,)
points in the q-space in which evaluate the basis
mu : float
scale factor of the basis

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

mapmri_phi_matrix

dipy.reconst.mapmri.mapmri_phi_matrix(radial_order, mu, q_gradients)

Compute the MAPMRI phi matrix for the signal [1] eq. (23).

Parameters:
radial_order : unsigned int,

an even integer that represent the order of the basis

mu : array, shape (3,)

scale factors of the basis for x, y, z

q_gradients : array, shape (N,3)

points in the q-space in which evaluate the basis

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

mapmri_psi_1d

dipy.reconst.mapmri.mapmri_psi_1d(n, x, mu)

One dimensional MAPMRI propagator basis function from [1] Eq. (10).

Parameters:
n : unsigned int

order of the basis

x : array, shape (N,)

points in the r-space in which evaluate the basis

mu : float

scale factor of the basis

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

mapmri_psi_matrix

dipy.reconst.mapmri.mapmri_psi_matrix(radial_order, mu, rgrad)

Compute the MAPMRI psi matrix for the propagator [1] eq. (22).

Parameters:
radial_order : unsigned int,

an even integer that represent the order of the basis

mu : array, shape (3,)

scale factors of the basis for x, y, z

rgrad : array, shape (N,3)

points in the r-space in which evaluate the EAP

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

mfactorial

dipy.reconst.mapmri.mfactorial()

factorial(x) -> Integral

Find x!. Raise a ValueError if x is negative or non-integral.

multi_voxel_fit

dipy.reconst.mapmri.multi_voxel_fit(single_voxel_fit)

Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition

optional_package

dipy.reconst.mapmri.optional_package(name, trip_msg=None)

Return package-like thing and module setup for package name

Parameters:
name : str

package name

trip_msg : None or str

message to give when someone tries to use the return package, but we could not import it, and have returned a TripWire object instead. Default message if None.

Returns:
pkg_like : module or TripWire instance

If we can import the package, return it. Otherwise return an object raising an error when accessed

have_pkg : bool

True if import for package was successful, false otherwise

module_setup : function

callable usually set as setup_module in calling namespace, to allow skipping tests.

real_sph_harm

dipy.reconst.mapmri.real_sph_harm(m, n, theta, phi)

Compute real spherical harmonics.

Where the real harmonic \(Y^m_n\) is defined to be:

Imag(\(Y^m_n\)) * sqrt(2) if m > 0 \(Y^0_n\) if m = 0 Real(\(Y^|m|_n\)) * sqrt(2) if m < 0

This may take scalar or array arguments. The inputs will be broadcasted against each other.

Parameters:
m : int |m| <= n

The order of the harmonic.

n : int >= 0

The degree of the harmonic.

theta : float [0, 2*pi]

The azimuthal (longitudinal) coordinate.

phi : float [0, pi]

The polar (colatitudinal) coordinate.

Returns:
y_mn : real float

The real harmonic \(Y^m_n\) sampled at theta and phi.

See also

scipy.special.sph_harm

sfactorial

dipy.reconst.mapmri.sfactorial(n, exact=False)

The factorial of a number or array of numbers.

The factorial of non-negative integer n is the product of all positive integers less than or equal to n:

n! = n * (n - 1) * (n - 2) * ... * 1
Parameters:
n : int or array_like of ints

Input values. If n < 0, the return value is 0.

exact : bool, optional

If True, calculate the answer exactly using long integer arithmetic. If False, result is approximated in floating point rapidly using the gamma function. Default is False.

Returns:
nf : float or int or ndarray

Factorial of n, as integer or float depending on exact.

Notes

For arrays with exact=True, the factorial is computed only once, for the largest input, with each other result computed in the process. The output dtype is increased to int64 or object if necessary.

With exact=False the factorial is approximated using the gamma function:

\[n! = \Gamma(n+1)\]

Examples

>>> from scipy.special import factorial
>>> arr = np.array([3, 4, 5])
>>> factorial(arr, exact=False)
array([   6.,   24.,  120.])
>>> factorial(arr, exact=True)
array([  6,  24, 120])
>>> factorial(5, exact=True)
120L

sph_harm_ind_list

dipy.reconst.mapmri.sph_harm_ind_list(sh_order)

Returns the degree (n) and order (m) of all the symmetric spherical harmonics of degree less then or equal to sh_order. The results, m_list and n_list are kx1 arrays, where k depends on sh_order. They can be passed to real_sph_harm().

Parameters:
sh_order : int

even int > 0, max degree to return

Returns:
m_list : array

orders of even spherical harmonics

n_list : array

degrees of even spherical harmonics

See also

real_sph_harm

warn

dipy.reconst.mapmri.warn()

Issue a warning, or maybe ignore it or raise an exception.

CallableArray

class dipy.reconst.multi_voxel.CallableArray

Bases: numpy.ndarray

An array which can be called like a function

Attributes:
T

Same as self.transpose(), except that self is returned if self.ndim < 2.

base

Base object if memory is from some other object.

ctypes

An object to simplify the interaction of the array with the ctypes module.

data

Python buffer object pointing to the start of the array’s data.

dtype

Data-type of the array’s elements.

flags

Information about the memory layout of the array.

flat

A 1-D iterator over the array.

imag

The imaginary part of the array.

itemsize

Length of one array element in bytes.

nbytes

Total bytes consumed by the elements of the array.

ndim

Number of array dimensions.

real

The real part of the array.

shape

Tuple of array dimensions.

size

Number of elements in the array.

strides

Tuple of bytes to step in each dimension when traversing an array.

Methods

__call__(*args, **kwargs) Call self as a function.
all([axis, out, keepdims]) Returns True if all elements evaluate to True.
any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
argmax([axis, out]) Return indices of the maximum values along the given axis.
argmin([axis, out]) Return indices of the minimum values along the given axis of a.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap([inplace]) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.
clip([min, max, out]) Return an array whose values are limited to [min, max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.
dot(b[, out]) Dot product of two arrays.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimension.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python scalar and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)
max([axis, out, keepdims]) Return the maximum along a given axis.
mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
min([axis, out, keepdims]) Return the minimum along a given axis.
newbyteorder([new_order]) Return the array with the same data viewed with a different byte order.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that the value of the element in kth position is in the position it would be in a sorted array.
prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given axis
ptp([axis, out, keepdims]) Peak to peak (maximum - minimum) value along a given axis.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape[, order]) Returns an array containing the same data with a new shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given number of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.
sort([axis, kind, order]) Sort an array, in-place.
squeeze([axis]) Remove single-dimensional entries from the shape of a.
std([axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements along given axis.
sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes in the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in the array.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along given axis.
view([dtype, type]) New view of array with the same data.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

MultiVoxelFit

class dipy.reconst.multi_voxel.MultiVoxelFit(model, fit_array, mask)

Bases: dipy.reconst.base.ReconstFit

Holds an array of fits and allows access to their attributes and methods

Attributes:
shape

Methods

predict(*args, **kwargs) Predict for the multi-voxel object using each single-object’s prediction API, with S0 provided from an array.
__init__(model, fit_array, mask)

Initialize self. See help(type(self)) for accurate signature.

predict(*args, **kwargs)

Predict for the multi-voxel object using each single-object’s prediction API, with S0 provided from an array.

shape

ReconstFit

class dipy.reconst.multi_voxel.ReconstFit(model, data)

Bases: object

Abstract class which holds the fit result of ReconstModel

For example that could be holding FA or GFA etc.

__init__(model, data)

Initialize self. See help(type(self)) for accurate signature.

as_strided

dipy.reconst.multi_voxel.as_strided(x, shape=None, strides=None, subok=False, writeable=True)

Create a view into the array with the given shape and strides.

Warning

This function has to be used with extreme care, see notes.

Parameters:
x : ndarray

Array to create a new.

shape : sequence of int, optional

The shape of the new array. Defaults to x.shape.

strides : sequence of int, optional

The strides of the new array. Defaults to x.strides.

subok : bool, optional

New in version 1.10.

If True, subclasses are preserved.

writeable : bool, optional

New in version 1.12.

If set to False, the returned array will always be readonly. Otherwise it will be writable if the original array was. It is advisable to set this to False if possible (see Notes).

Returns:
view : ndarray

See also

broadcast_to
broadcast an array to a given shape.
reshape
reshape an array.

Notes

as_strided creates a view into the array given the exact strides and shape. This means it manipulates the internal data structure of ndarray and, if done incorrectly, the array elements can point to invalid memory and can corrupt results or crash your program. It is advisable to always use the original x.strides when calculating new strides to avoid reliance on a contiguous memory layout.

Furthermore, arrays created with this function often contain self overlapping memory, so that two elements are identical. Vectorized write operations on such arrays will typically be unpredictable. They may even give different results for small, large, or transposed arrays. Since writing to these arrays has to be tested and done with great care, you may want to use writeable=False to avoid accidental write operations.

For these reasons it is advisable to avoid as_strided when possible.

multi_voxel_fit

dipy.reconst.multi_voxel.multi_voxel_fit(single_voxel_fit)

Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition

ndindex

dipy.reconst.multi_voxel.ndindex(shape)

An N-dimensional iterator object to index arrays.

Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each iteration a tuple of indices is returned; the last dimension is iterated over first.

Parameters:
shape : tuple of ints

The dimensions of the array.

Examples

>>> from dipy.core.ndindex import ndindex
>>> shape = (3, 2, 1)
>>> for index in ndindex(shape):
...     print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

OdfFit

class dipy.reconst.odf.OdfFit(model, data)

Bases: dipy.reconst.base.ReconstFit

Methods

odf(sphere) To be implemented but specific odf models
__init__(model, data)

Initialize self. See help(type(self)) for accurate signature.

odf(sphere)

To be implemented but specific odf models

OdfModel

class dipy.reconst.odf.OdfModel(gtab)

Bases: dipy.reconst.base.ReconstModel

An abstract class to be sub-classed by specific odf models

All odf models should provide a fit method which may take data as it’s first and only argument.

Methods

fit(data) To be implemented by specific odf models
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data)

To be implemented by specific odf models

ReconstFit

class dipy.reconst.odf.ReconstFit(model, data)

Bases: object

Abstract class which holds the fit result of ReconstModel

For example that could be holding FA or GFA etc.

__init__(model, data)

Initialize self. See help(type(self)) for accurate signature.

ReconstModel

class dipy.reconst.odf.ReconstModel(gtab)

Bases: object

Abstract class for signal reconstruction models

Methods

fit  
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data, mask=None, **kwargs)

gfa

dipy.reconst.odf.gfa(samples)

The general fractional anisotropy of a function evaluated on the unit sphere

Parameters:
samples : ndarray

Values of data on the unit sphere.

Returns:
gfa : ndarray

GFA evaluated in each entry of the array, along the last dimension. An np.nan is returned for coordinates that contain all-zeros in samples.

Notes

The GFA is defined as [1]

\sqrt{\frac{n \sum_i{(\Psi_i - <\Psi>)^2}}{(n-1) \sum{\Psi_i ^ 2}}}

Where \(\Psi\) is an orientation distribution function sampled discretely on the unit sphere and angle brackets denote average over the samples on the sphere.

[1]Quality assessment of High Angular Resolution Diffusion Imaging data using bootstrap on Q-ball reconstruction. J. Cohen Adad, M. Descoteaux, L.L. Wald. JMRI 33: 1194-1208.

minmax_normalize

dipy.reconst.odf.minmax_normalize(samples, out=None)

Min-max normalization of a function evaluated on the unit sphere

Normalizes samples to (samples - min(samples)) / (max(samples) - min(samples)) for each unit sphere.

Parameters:
samples : ndarray (…, N)

N samples on a unit sphere for each point, stored along the last axis of the array.

out : ndrray (…, N), optional

An array to store the normalized samples.

Returns:
out : ndarray, (…, N)

Normalized samples.

InTemporaryDirectory

class dipy.reconst.peaks.InTemporaryDirectory(suffix='', prefix='tmp', dir=None)

Bases: nibabel.tmpdirs.TemporaryDirectory

Create, return, and change directory to a temporary directory

Examples

>>> import os
>>> my_cwd = os.getcwd()
>>> with InTemporaryDirectory() as tmpdir:
...     _ = open('test.txt', 'wt').write('some text')
...     assert os.path.isfile('test.txt')
...     assert os.path.isfile(os.path.join(tmpdir, 'test.txt'))
>>> os.path.exists(tmpdir)
False
>>> os.getcwd() == my_cwd
True

Methods

cleanup  
__init__(suffix='', prefix='tmp', dir=None)

Initialize self. See help(type(self)) for accurate signature.

PeaksAndMetrics

class dipy.reconst.peaks.PeaksAndMetrics

Bases: dipy.reconst.peak_direction_getter.PeaksAndMetricsDirectionGetter

Attributes:
ang_thr
qa_thr
total_weight

Methods

initial_direction The best starting directions for fiber tracking from point
get_direction  
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

PeaksAndMetricsDirectionGetter

class dipy.reconst.peaks.PeaksAndMetricsDirectionGetter

Bases: dipy.tracking.local.direction_getter.DirectionGetter

Deterministic Direction Getter based on peak directions.

This class contains the cython portion of the code for PeaksAndMetrics and is not meant to be used on its own.

Attributes:
ang_thr
qa_thr
total_weight

Methods

initial_direction The best starting directions for fiber tracking from point
get_direction  
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

ang_thr
initial_direction()

The best starting directions for fiber tracking from point

All the valid peaks in the voxel closest to point are returned as initial directions.

qa_thr
total_weight

Sphere

class dipy.reconst.peaks.Sphere(x=None, y=None, z=None, theta=None, phi=None, xyz=None, faces=None, edges=None)

Bases: object

Points on the unit sphere.

The sphere can be constructed using one of three conventions:

Sphere(x, y, z)
Sphere(xyz=xyz)
Sphere(theta=theta, phi=phi)
Parameters:
x, y, z : 1-D array_like

Vertices as x-y-z coordinates.

theta, phi : 1-D array_like

Vertices as spherical coordinates. Theta and phi are the inclination and azimuth angles respectively.

xyz : (N, 3) ndarray

Vertices as x-y-z coordinates.

faces : (N, 3) ndarray

Indices into vertices that form triangular faces. If unspecified, the faces are computed using a Delaunay triangulation.

edges : (N, 2) ndarray

Edges between vertices. If unspecified, the edges are derived from the faces.

Attributes:
x
y
z

Methods

find_closest(xyz) Find the index of the vertex in the Sphere closest to the input vector
subdivide([n]) Subdivides each face of the sphere into four new faces.
edges  
faces  
vertices  
__init__(x=None, y=None, z=None, theta=None, phi=None, xyz=None, faces=None, edges=None)

Initialize self. See help(type(self)) for accurate signature.

edges()
faces()
find_closest(xyz)

Find the index of the vertex in the Sphere closest to the input vector

Parameters:
xyz : array-like, 3 elements

A unit vector

subdivide(n=1)

Subdivides each face of the sphere into four new faces.

New vertices are created at a, b, and c. Then each face [x, y, z] is divided into faces [x, a, c], [y, a, b], [z, b, c], and [a, b, c].

   y
   /               /               a/____
/\    /            /  \  /             /____\/____          x      c     z
Parameters:
n : int, optional

The number of subdivisions to preform.

Returns:
new_sphere : Sphere

The subdivided sphere.

vertices()
x
y
z

repeat

class dipy.reconst.peaks.repeat(object[, times]) → create an iterator which returns the object

Bases: object

for the specified number of times. If not specified, returns the object endlessly.

__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

xrange

dipy.reconst.peaks.xrange

alias of builtins.range

Pool

dipy.reconst.peaks.Pool(processes=None, initializer=None, initargs=(), maxtasksperchild=None)

Returns a process pool object

cpu_count

dipy.reconst.peaks.cpu_count()

Returns the number of CPUs in the system

gfa

dipy.reconst.peaks.gfa(samples)

The general fractional anisotropy of a function evaluated on the unit sphere

Parameters:
samples : ndarray

Values of data on the unit sphere.

Returns:
gfa : ndarray

GFA evaluated in each entry of the array, along the last dimension. An np.nan is returned for coordinates that contain all-zeros in samples.

Notes

The GFA is defined as [1]

\sqrt{\frac{n \sum_i{(\Psi_i - <\Psi>)^2}}{(n-1) \sum{\Psi_i ^ 2}}}

Where \(\Psi\) is an orientation distribution function sampled discretely on the unit sphere and angle brackets denote average over the samples on the sphere.

[1]Quality assessment of High Angular Resolution Diffusion Imaging data using bootstrap on Q-ball reconstruction. J. Cohen Adad, M. Descoteaux, L.L. Wald. JMRI 33: 1194-1208.

local_maxima

dipy.reconst.peaks.local_maxima()

Local maxima of a function evaluated on a discrete set of points.

If a function is evaluated on some set of points where each pair of neighboring points is an edge in edges, find the local maxima.

Parameters:
odf : array, 1d, dtype=double

The function evaluated on a set of discrete points.

edges : array (N, 2)

The set of neighbor relations between the points. Every edge, ie edges[i, :], is a pair of neighboring points.

Returns:
peak_values : ndarray

Value of odf at a maximum point. Peak values is sorted in descending order.

peak_indices : ndarray

Indices of maximum points. Sorted in the same order as peak_values so odf[peak_indices[i]] == peak_values[i].

See also

dipy.core.sphere

ndindex

dipy.reconst.peaks.ndindex(shape)

An N-dimensional iterator object to index arrays.

Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each iteration a tuple of indices is returned; the last dimension is iterated over first.

Parameters:
shape : tuple of ints

The dimensions of the array.

Examples

>>> from dipy.core.ndindex import ndindex
>>> shape = (3, 2, 1)
>>> for index in ndindex(shape):
...     print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

peak_directions

dipy.reconst.peaks.peak_directions(odf, sphere, relative_peak_threshold=0.5, min_separation_angle=25, minmax_norm=True)

Get the directions of odf peaks.

Peaks are defined as points on the odf that are greater than at least one neighbor and greater than or equal to all neighbors. Peaks are sorted in descending order by their values then filtered based on their relative size and spacing on the sphere. An odf may have 0 peaks, for example if the odf is perfectly isotropic.

Parameters:
odf : 1d ndarray

The odf function evaluated on the vertices of sphere

sphere : Sphere

The Sphere providing discrete directions for evaluation.

relative_peak_threshold : float in [0., 1.]

Only peaks greater than min + relative_peak_threshold * scale are kept, where min = max(0, odf.min()) and scale = odf.max() - min.

min_separation_angle : float in [0, 90]

The minimum distance between directions. If two peaks are too close only the larger of the two is returned.

Returns:
directions : (N, 3) ndarray

N vertices for sphere, one for each peak

values : (N,) ndarray

peak values

indices : (N,) ndarray

peak indices of the directions on the sphere

Notes

If the odf has any negative values, they will be clipped to zeros.

peak_directions_nl

dipy.reconst.peaks.peak_directions_nl(sphere_eval, relative_peak_threshold=0.25, min_separation_angle=25, sphere=<dipy.core.sphere.HemiSphere object>, xtol=1e-07)

Non Linear Direction Finder.

Parameters:
sphere_eval : callable

A function which can be evaluated on a sphere.

relative_peak_threshold : float

Only return peaks greater than relative_peak_threshold * m where m is the largest peak.

min_separation_angle : float in [0, 90]

The minimum distance between directions. If two peaks are too close only the larger of the two is returned.

sphere : Sphere

A discrete Sphere. The points on the sphere will be used for initial estimate of maximums.

xtol : float

Relative tolerance for optimization.

Returns:
directions : array (N, 3)

Points on the sphere corresponding to N local maxima on the sphere.

values : array (N,)

Value of sphere_eval at each point on directions.

peaks_from_model

dipy.reconst.peaks.peaks_from_model(model, data, sphere, relative_peak_threshold, min_separation_angle, mask=None, return_odf=False, return_sh=True, gfa_thr=0, normalize_peaks=False, sh_order=8, sh_basis_type=None, npeaks=5, B=None, invB=None, parallel=False, nbr_processes=None)

Fit the model to data and computes peaks and metrics

Parameters:
model : a model instance

model will be used to fit the data.

sphere : Sphere

The Sphere providing discrete directions for evaluation.

relative_peak_threshold : float

Only return peaks greater than relative_peak_threshold * m where m is the largest peak.

min_separation_angle : float in [0, 90] The minimum distance between

directions. If two peaks are too close only the larger of the two is returned.

mask : array, optional

If mask is provided, voxels that are False in mask are skipped and no peaks are returned.

return_odf : bool

If True, the odfs are returned.

return_sh : bool

If True, the odf as spherical harmonics coefficients is returned

gfa_thr : float

Voxels with gfa less than gfa_thr are skipped, no peaks are returned.

normalize_peaks : bool

If true, all peak values are calculated relative to max(odf).

sh_order : int, optional

Maximum SH order in the SH fit. For sh_order, there will be (sh_order + 1) * (sh_order + 2) / 2 SH coefficients (default 8).

sh_basis_type : {None, ‘tournier07’, ‘descoteaux07’}

None for the default DIPY basis, tournier07 for the Tournier 2007 [2] basis, and descoteaux07 for the Descoteaux 2007 [1] basis (None defaults to descoteaux07).

sh_smooth : float, optional

Lambda-regularization in the SH fit (default 0.0).

npeaks : int

Maximum number of peaks found (default 5 peaks).

B : ndarray, optional

Matrix that transforms spherical harmonics to spherical function sf = np.dot(sh, B).

invB : ndarray, optional

Inverse of B.

parallel: bool

If True, use multiprocessing to compute peaks and metric (default False). Temporary files are saved in the default temporary directory of the system. It can be changed using import tempfile and tempfile.tempdir = '/path/to/tempdir'.

nbr_processes: int

If parallel is True, the number of subprocesses to use (default multiprocessing.cpu_count()).

Returns:
pam : PeaksAndMetrics

An object with gfa, peak_directions, peak_values, peak_indices, odf, shm_coeffs as attributes

References

[1](1, 2) Descoteaux, M., Angelino, E., Fitzgibbons, S. and Deriche, R. Regularized, Fast, and Robust Analytical Q-ball Imaging. Magn. Reson. Med. 2007;58:497-510.
[2](1, 2) Tournier J.D., Calamante F. and Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35(4):1459-1472.

remove_similar_vertices

dipy.reconst.peaks.remove_similar_vertices()

Remove vertices that are less than theta degrees from any other

Returns vertices that are at least theta degrees from any other vertex. Vertex v and -v are considered the same so if v and -v are both in vertices only one is kept. Also if v and w are both in vertices, w must be separated by theta degrees from both v and -v to be unique.

Parameters:
vertices : (N, 3) ndarray

N unit vectors.

theta : float

The minimum separation between vertices in degrees.

return_mapping : {False, True}, optional

If True, return mapping as well as vertices and maybe indices (see below).

return_indices : {False, True}, optional

If True, return indices as well as vertices and maybe mapping (see below).

Returns:
unique_vertices : (M, 3) ndarray

Vertices sufficiently separated from one another.

mapping : (N,) ndarray

For each element vertices[i] (\(i \in 0..N-1\)), the index \(j\) to a vertex in unique_vertices that is less than theta degrees from vertices[i]. Only returned if return_mapping is True.

indices : (N,) ndarray

indices gives the reverse of mapping. For each element unique_vertices[j] (\(j \in 0..M-1\)), the index \(i\) to a vertex in vertices that is less than theta degrees from unique_vertices[j]. If there is more than one element of vertices that is less than theta degrees from unique_vertices[j], return the first (lowest index) matching value. Only return if return_indices is True.

reshape_peaks_for_visualization

dipy.reconst.peaks.reshape_peaks_for_visualization(peaks)

Reshape peaks for visualization.

Reshape and convert to float32 a set of peaks for visualisation with mrtrix or the fibernavigator.

search_descending

dipy.reconst.peaks.search_descending()

i in descending array a so a[i] < a[0] * relative_threshold

Call T = a[0] * relative_threshold. Return value i will be the smallest index in the descending array a such that a[i] < T. Equivalently, i will be the largest index such that all(a[:i] >= T). If all values in a are >= T, return the length of array a.

Parameters:
a : ndarray, ndim=1, c-contiguous

Array to be searched. We assume a is in descending order.

relative_threshold : float

Applied threshold will be T with T = a[0] * relative_threshold.

Returns:
i : np.intp

If T = a[0] * relative_threshold then i will be the largest index such that all(a[:i] >= T). If all values in a are >= T then i will be len(a).

Examples

>>> a = np.arange(10, 0, -1, dtype=float)
>>> a
array([ 10.,   9.,   8.,   7.,   6.,   5.,   4.,   3.,   2.,   1.])
>>> search_descending(a, 0.5)
6
>>> a < 10 * 0.5
array([False, False, False, False, False, False,  True,  True,  True,  True], dtype=bool)
>>> search_descending(a, 1)
1
>>> search_descending(a, 2)
0
>>> search_descending(a, 0)
10

sh_to_sf_matrix

dipy.reconst.peaks.sh_to_sf_matrix(sphere, sh_order, basis_type=None, return_inv=True, smooth=0)

Matrix that transforms Spherical harmonics (SH) to spherical function (SF).

Parameters:
sphere : Sphere

The points on which to sample the spherical function.

sh_order : int, optional

Maximum SH order in the SH fit. For sh_order, there will be (sh_order + 1) * (sh_order_2) / 2 SH coefficients (default 4).

basis_type : {None, ‘tournier07’, ‘descoteaux07’}

None for the default DIPY basis, tournier07 for the Tournier 2007 [2] basis, and descoteaux07 for the Descoteaux 2007 [1] basis (None defaults to descoteaux07).

return_inv : bool

If True then the inverse of the matrix is also returned

smooth : float, optional

Lambda-regularization in the SH fit (default 0.0).

Returns:
B : ndarray

Matrix that transforms spherical harmonics to spherical function sf = np.dot(sh, B).

invB : ndarray

Inverse of B.

References

[1](1, 2) Descoteaux, M., Angelino, E., Fitzgibbons, S. and Deriche, R. Regularized, Fast, and Robust Analytical Q-ball Imaging. Magn. Reson. Med. 2007;58:497-510.
[2](1, 2) Tournier J.D., Calamante F. and Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35(4):1459-1472.

warn

dipy.reconst.peaks.warn()

Issue a warning, or maybe ignore it or raise an exception.

Cache

class dipy.reconst.qtdmri.Cache

Bases: object

Cache values based on a key object (such as a sphere or gradient table).

Notes

This class is meant to be used as a mix-in:

class MyModel(Model, Cache):
    pass

class MyModelFit(Fit):
    pass

Inside a method on the fit, typical usage would be:

def odf(sphere):
    M = self.model.cache_get('odf_basis_matrix', key=sphere)

    if M is None:
        M = self._compute_basis_matrix(sphere)
        self.model.cache_set('odf_basis_matrix', key=sphere, value=M)

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

cache_clear()

Clear the cache.

cache_get(tag, key, default=None)

Retrieve a value from the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

default : object

Value to be returned if no cached entry is found.

Returns:
v : object

Value from the cache associated with (tag, key). Returns default if no cached entry is found.

cache_set(tag, key, value)

Store a value in the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

value : object

Value stored in the cache for each unique combination of (tag, key).

Examples

>>> def compute_expensive_matrix(parameters):
...     # Imagine the following computation is very expensive
...     return (p**2 for p in parameters)
>>> c = Cache()
>>> parameters = (1, 2, 3)
>>> X1 = compute_expensive_matrix(parameters)
>>> c.cache_set('expensive_matrix', parameters, X1)
>>> X2 = c.cache_get('expensive_matrix', parameters)
>>> X1 is X2
True

QtdmriFit

class dipy.reconst.qtdmri.QtdmriFit(model, qtdmri_coef, us, ut, tau_scaling, R, lopt, alpha, cvxpy_solution_optimal)

Bases: object

Methods

fitted_signal([gtab]) Recovers the fitted signal for the given gradient table.
msd(tau) Calculates the analytical Mean Squared Displacement (MSD) for a given diffusion time tau.
norm_of_laplacian_signal() Calculates the norm of the laplacian of the fitted signal [Re930b800cbc4-1].
odf(sphere, tau[, s]) Calculates the analytical Orientation Distribution Function (ODF) for a given diffusion time tau from the signal, [1] Eq.
odf_sh(tau[, s]) Calculates the real analytical odf for a given discrete sphere.
pdf(rt_points) Diffusion propagator on a given set of real points.
predict(qvals_or_gtab[, S0]) Recovers the reconstructed signal for any qvalue array or gradient table.
qiv(tau) Calculates the analytical Q-space Inverse Variance (QIV) for given diffusion time tau.
qtdmri_to_mapmri_coef(tau) This function converts the qtdmri coefficients to mapmri coefficients for a given tau [1].
rtap(tau) Calculates the analytical return to the axis probability (RTAP) for a given diffusion time tau, [1] eq.
rtop(tau) Calculates the analytical return to the origin probability (RTOP) for a given diffusion time tau [1] eq.
rtpp(tau) Calculates the analytical return to the plane probability (RTPP) for a given diffusion time tau, [1] eq.
sparsity_abs([threshold]) As a measure of sparsity, calculates the number of largest coefficients needed to absolute sum up to 99% of the total absolute sum of all coefficients
sparsity_density([threshold]) As a measure of sparsity, calculates the number of largest coefficients needed to squared sum up to 99% of the total squared sum of all coefficients
__init__(model, qtdmri_coef, us, ut, tau_scaling, R, lopt, alpha, cvxpy_solution_optimal)

Calculates diffusion properties for a single voxel

Parameters:
model : object,

AnalyticalModel

qtdmri_coef : 1d ndarray,

qtdmri coefficients

us : array, 3 x 1

spatial scaling factors

ut : float

temporal scaling factor

tau_scaling : float,

the temporal scaling that used to scale tau to the size of us

R : 3x3 numpy array,

tensor eigenvectors

lopt : float,

laplacian regularization weight

alpha : float,

the l1 regularization weight

cvxpy_solution_optimal: bool,

indicates whether the cvxpy coefficient estimation reach an optimal solution

fitted_signal(gtab=None)

Recovers the fitted signal for the given gradient table. If no gradient table is given it recovers the signal for the gtab of the model object.

msd(tau)

Calculates the analytical Mean Squared Displacement (MSD) for a given diffusion time tau. It is defined as the Laplacian of the origin of the estimated signal [1]. The analytical formula for the MAP-MRI basis was derived in [R9ee09c2d0d0c-2] eq. (C13, D1). The qtdmri coefficients are first converted to mapmri coefficients following [3].

Parameters:
tau : float

diffusion time (big_delta - small_delta / 3.) in seconds

References

[1](1, 2) Cheng, J., 2014. Estimation and Processing of Ensemble Average Propagator and Its Features in Diffusion MRI. Ph.D. Thesis.
[3]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.
norm_of_laplacian_signal()

Calculates the norm of the laplacian of the fitted signal [Re930b800cbc4-1]. This information could be useful to assess if the extrapolation of the fitted signal contains spurious oscillations. A high laplacian norm may indicate that these are present, and any q-space indices that use integrals of the signal may be corrupted (e.g. RTOP, RTAP, RTPP, QIV). In contrast to [1], the Laplacian now describes oscillations in the 4-dimensional qt-signal [2].

References

[2]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.
odf(sphere, tau, s=2)

Calculates the analytical Orientation Distribution Function (ODF) for a given diffusion time tau from the signal, [1] Eq. (32). The qtdmri coefficients are first converted to mapmri coefficients following [2].

Parameters:
sphere : dipy sphere object

sphere object with vertice orientations to compute the ODF on.

tau : float

diffusion time (big_delta - small_delta / 3.) in seconds

s : unsigned int

radial moment of the ODF

References

[1](1, 2, 3) Ozarslan E. et. al, “Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.
[2]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.
odf_sh(tau, s=2)

Calculates the real analytical odf for a given discrete sphere. Computes the design matrix of the ODF for the given sphere vertices and radial moment [1] eq. (32). The radial moment s acts as a sharpening method. The analytical equation for the spherical ODF basis is given in [R0a1decd741db-2] eq. (C8). The qtdmri coefficients are first converted to mapmri coefficients following [3].

Parameters:
tau : float

diffusion time (big_delta - small_delta / 3.) in seconds

s : unsigned int

radial moment of the ODF

References

[1](1, 2) Ozarslan E. et. al, “Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.
[3]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.
pdf(rt_points)

Diffusion propagator on a given set of real points. if the array r_points is non writeable, then intermediate results are cached for faster recalculation

predict(qvals_or_gtab, S0=1.0)

Recovers the reconstructed signal for any qvalue array or gradient table.

qiv(tau)

Calculates the analytical Q-space Inverse Variance (QIV) for given diffusion time tau. It is defined as the inverse of the Laplacian of the origin of the estimated propagator [1] eq. (22). The analytical formula for the MAP-MRI basis was derived in [R1e32c9d7d6dc-2] eq. (C14, D2). The qtdmri coefficients are first converted to mapmri coefficients following [3].

Parameters:
tau : float

diffusion time (big_delta - small_delta / 3.) in seconds

References

[1](1, 2) Hosseinbor et al. “Bessel fourier orientation reconstruction (bfor): An analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q-space indices. NeuroImage 64, 2013, 650–670.
[3]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.
qtdmri_to_mapmri_coef(tau)

This function converts the qtdmri coefficients to mapmri coefficients for a given tau [1]. The conversion is performed by a matrix multiplication that evaluates the time-depenent part of the basis and multiplies it with the coefficients, after which coefficients with the same spatial orders are summed up, resulting in mapmri coefficients.

Parameters:
tau : float

diffusion time (big_delta - small_delta / 3.) in seconds

References

[1](1, 2, 3) Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.
rtap(tau)

Calculates the analytical return to the axis probability (RTAP) for a given diffusion time tau, [1] eq. (40, 44a). The analytical formula for the isotropic MAP-MRI basis was derived in [Rb426f7ff6c1f-2] eq. (C11). The qtdmri coefficients are first converted to mapmri coefficients following [3].

Parameters:
tau : float

diffusion time (big_delta - small_delta / 3.) in seconds

References

[1](1, 2, 3) Ozarslan E. et. al, “Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.
[3]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.
rtop(tau)

Calculates the analytical return to the origin probability (RTOP) for a given diffusion time tau [1] eq. (36, 43). The analytical formula for the isotropic MAP-MRI basis was derived in [Rae9ef6a2072f-2] eq. (C11). The qtdmri coefficients are first converted to mapmri coefficients following [3].

Parameters:
tau : float

diffusion time (big_delta - small_delta / 3.) in seconds

References

[1](1, 2, 3) Ozarslan E. et. al, “Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.
[3]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.
rtpp(tau)

Calculates the analytical return to the plane probability (RTPP) for a given diffusion time tau, [1] eq. (42). The analytical formula for the isotropic MAP-MRI basis was derived in [R0ef534f1e9fc-2] eq. (C11). The qtdmri coefficients are first converted to mapmri coefficients following [3].

Parameters:
tau : float

diffusion time (big_delta - small_delta / 3.) in seconds

References

[1](1, 2, 3) Ozarslan E. et. al, “Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.
[3]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.
sparsity_abs(threshold=0.99)

As a measure of sparsity, calculates the number of largest coefficients needed to absolute sum up to 99% of the total absolute sum of all coefficients

sparsity_density(threshold=0.99)

As a measure of sparsity, calculates the number of largest coefficients needed to squared sum up to 99% of the total squared sum of all coefficients

QtdmriModel

class dipy.reconst.qtdmri.QtdmriModel(gtab, radial_order=6, time_order=2, laplacian_regularization=False, laplacian_weighting=0.2, l1_regularization=False, l1_weighting=0.1, cartesian=True, anisotropic_scaling=True, normalization=False, constrain_q0=True, bval_threshold=10000000000.0, eigenvalue_threshold=0.0001, cvxpy_solver='ECOS')

Bases: dipy.reconst.cache.Cache

The q:math:tau-dMRI model [1] to analytically and continuously represent the q:math:tau diffusion signal attenuation over diffusion sensitization q and diffusion time \(\tau\). The model can be seen as an extension of the MAP-MRI basis [2] towards different diffusion times.

The main idea is to model the diffusion signal over time and space as a linear combination of continuous functions,

..math::
nowrap:
begin{equation}

hat{E}(textbf{q},tau;textbf{c}) = sum_i^{N_{textbf{q}}}sum_k^{N_tau} textbf{c}_{ik} ,Phi_i(textbf{q}),T_k(tau),

end{equation}

where \(\Phi\) and \(T\) are the spatial and temporal basis funcions, \(N_{\textbf{q}}\) and \(N_\tau\) are the maximum spatial and temporal order, and \(i,k\) are basis order iterators.

The estimation of the coefficients \(c_i\) can be regularized using either analytic Laplacian regularization, sparsity regularization using the l1-norm, or both to do a type of elastic net regularization.

From the coefficients, there exists an analytical formula to estimate the ODF, RTOP, RTAP, RTPP, QIV and MSD, for any diffusion time.

Parameters:
gtab : GradientTable,

gradient directions and bvalues container class. The bvalues should be in the normal s/mm^2. big_delta and small_delta need to given in seconds.

radial_order : unsigned int,

an even integer representing the spatial/radial order of the basis.

time_order : unsigned int,

an integer larger or equal than zero representing the time order of the basis.

laplacian_regularization : bool,

Regularize using the Laplacian of the qt-dMRI basis.

laplacian_weighting: string or scalar,

The string ‘GCV’ makes it use generalized cross-validation to find the regularization weight [3]. A scalar sets the regularization weight to that value.

l1_regularization : bool,

Regularize by imposing sparsity in the coefficients using the l1-norm.

l1_weighting : ‘CV’ or scalar,

The string ‘CV’ makes it use five-fold cross-validation to find the regularization weight. A scalar sets the regularization weight to that value.

cartesian : bool

Whether to use the Cartesian or spherical implementation of the qt-dMRI basis, which we first explored in [4].

anisotropic_scaling : bool

Whether to use anisotropic scaling or isotropic scaling. This option can be used to test if the Cartesian implementation is equivalent with the spherical one when using the same scaling.

normalization : bool

Whether to normalize the basis functions such that their inner product is equal to one. Normalization is only necessary when imposing sparsity in the spherical basis if cartesian=False.

constrain_q0 : bool

whether to constrain the q0 point to unity along the tau-space. This is necessary to ensure that \(E(0,\tau)=1\).

bval_threshold : float

the threshold b-value to be used, such that only data points below that threshold are used when estimating the scale factors.

eigenvalue_threshold : float,

Sets the minimum of the tensor eigenvalues in order to avoid stability problem.

cvxpy_solver : str, optional

cvxpy solver name. Optionally optimize the positivity constraint with a particular cvxpy solver. See See http://www.cvxpy.org/ for details. Default: ECOS.

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.
[2]Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.
[3]Craven et al. “Smoothing Noisy Data with Spline Functions.” NUMER MATH 31.4 (1978): 377-403.
[4]Fick, Rutger HJ, et al. “A unifying framework for spatial and temporal diffusion in diffusion mri.” International Conference on Information Processing in Medical Imaging. Springer, Cham, 2015.

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fit method for every voxel in data
__init__(gtab, radial_order=6, time_order=2, laplacian_regularization=False, laplacian_weighting=0.2, l1_regularization=False, l1_weighting=0.1, cartesian=True, anisotropic_scaling=True, normalization=False, constrain_q0=True, bval_threshold=10000000000.0, eigenvalue_threshold=0.0001, cvxpy_solver='ECOS')

Initialize self. See help(type(self)) for accurate signature.

fit(data, mask=None)

Fit method for every voxel in data

GCV_cost_function

dipy.reconst.qtdmri.GCV_cost_function(weight, arguments)

Generalized Cross Validation Function that is iterated [1].

References

[1]Craven et al. “Smoothing Noisy Data with Spline Functions.” NUMER MATH 31.4 (1978): 377-403.

H

dipy.reconst.qtdmri.H(value)

Step function of H(x)=1 if x>=0 and zero otherwise. Used for the temporal laplacian matrix.

angular_basis_EAP_opt

dipy.reconst.qtdmri.angular_basis_EAP_opt(j, l, m, r, theta, phi)

angular_basis_opt

dipy.reconst.qtdmri.angular_basis_opt(l, m, q, theta, phi)

Angular basis independent of spatial scaling factor us. Though it includes q, it is independent of the data and can be precomputed.

cart2sphere

dipy.reconst.qtdmri.cart2sphere(x, y, z)

Return angles for Cartesian 3D coordinates x, y, and z

See doc for sphere2cart for angle conventions and derivation of the formulae.

\(0\le\theta\mathrm{(theta)}\le\pi\) and \(-\pi\le\phi\mathrm{(phi)}\le\pi\)

Parameters:
x : array_like

x coordinate in Cartesian space

y : array_like

y coordinate in Cartesian space

z : array_like

z coordinate

Returns:
r : array

radius

theta : array

inclination (polar) angle

phi : array

azimuth angle

create_rt_space_grid

dipy.reconst.qtdmri.create_rt_space_grid(grid_size_r, max_radius_r, grid_size_tau, min_radius_tau, max_radius_tau)

Generates EAP grid (for potential positivity constraint).

design_matrix_spatial

dipy.reconst.qtdmri.design_matrix_spatial(bvecs, qvals, dtype=None)

Constructs design matrix for DTI weighted least squares or least squares fitting. (Basser et al., 1994a)

Parameters:
bvecs : array (N x 3)

unit b-vectors of the acquisition.

qvals : array (N,)

corresponding q-values in 1/mm

Returns:
design_matrix : array (g,7)

Design matrix or B matrix assuming Gaussian distributed tensor model design_matrix[j, :] = (Bxx, Byy, Bzz, Bxy, Bxz, Byz, dummy)

elastic_crossvalidation

dipy.reconst.qtdmri.elastic_crossvalidation(b0s_mask, E, M, L, lopt, weight_array=array([0., 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 ]))

cross-validation function to find the optimal weight of alpha for sparsity regularization when also Laplacian regularization is used.

factorial

dipy.reconst.qtdmri.factorial(n, exact=False)

The factorial of a number or array of numbers.

The factorial of non-negative integer n is the product of all positive integers less than or equal to n:

n! = n * (n - 1) * (n - 2) * ... * 1
Parameters:
n : int or array_like of ints

Input values. If n < 0, the return value is 0.

exact : bool, optional

If True, calculate the answer exactly using long integer arithmetic. If False, result is approximated in floating point rapidly using the gamma function. Default is False.

Returns:
nf : float or int or ndarray

Factorial of n, as integer or float depending on exact.

Notes

For arrays with exact=True, the factorial is computed only once, for the largest input, with each other result computed in the process. The output dtype is increased to int64 or object if necessary.

With exact=False the factorial is approximated using the gamma function:

\[n! = \Gamma(n+1)\]

Examples

>>> from scipy.special import factorial
>>> arr = np.array([3, 4, 5])
>>> factorial(arr, exact=False)
array([   6.,   24.,  120.])
>>> factorial(arr, exact=True)
array([  6,  24, 120])
>>> factorial(5, exact=True)
120L

factorial2

dipy.reconst.qtdmri.factorial2(n, exact=False)

Double factorial.

This is the factorial with every second value skipped. E.g., 7!! = 7 * 5 * 3 * 1. It can be approximated numerically as:

n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi)  n odd
    = 2**(n/2) * (n/2)!                           n even
Parameters:
n : int or array_like

Calculate n!!. Arrays are only supported with exact set to False. If n < 0, the return value is 0.

exact : bool, optional

The result can be approximated rapidly using the gamma-formula above (default). If exact is set to True, calculate the answer exactly using integer arithmetic.

Returns:
nff : float or int

Double factorial of n, as an int or a float depending on exact.

Examples

>>> from scipy.special import factorial2
>>> factorial2(7, exact=False)
array(105.00000000000001)
>>> factorial2(7, exact=True)
105L

fmin_l_bfgs_b

dipy.reconst.qtdmri.fmin_l_bfgs_b(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, m=10, factr=10000000.0, pgtol=1e-05, epsilon=1e-08, iprint=-1, maxfun=15000, maxiter=15000, disp=None, callback=None, maxls=20)

Minimize a function func using the L-BFGS-B algorithm.

Parameters:
func : callable f(x,*args)

Function to minimise.

x0 : ndarray

Initial guess.

fprime : callable fprime(x,*args), optional

The gradient of func. If None, then func returns the function value and the gradient (f, g = func(x, *args)), unless approx_grad is True in which case func returns only f.

args : sequence, optional

Arguments to pass to func and fprime.

approx_grad : bool, optional

Whether to approximate the gradient numerically (in which case func returns only the function value).

bounds : list, optional

(min, max) pairs for each element in x, defining the bounds on that parameter. Use None or +-inf for one of min or max when there is no bound in that direction.

m : int, optional

The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.)

factr : float, optional

The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps, where eps is the machine precision, which is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See Notes for relationship to ftol, which is exposed (instead of factr) by the scipy.optimize.minimize interface to L-BFGS-B.

pgtol : float, optional

The iteration will stop when max{|proj g_i | i = 1, ..., n} <= pgtol where pg_i is the i-th component of the projected gradient.

epsilon : float, optional

Step size used when approx_grad is True, for numerically calculating the gradient

iprint : int, optional

Controls the frequency of output. iprint < 0 means no output; iprint = 0 print only one line at the last iteration; 0 < iprint < 99 print also f and |proj g| every iprint iterations; iprint = 99 print details of every iteration except n-vectors; iprint = 100 print also the changes of active set and final x; iprint > 100 print details of every iteration including x and g.

disp : int, optional

If zero, then no output. If a positive number, then this over-rides iprint (i.e., iprint gets the value of disp).

maxfun : int, optional

Maximum number of function evaluations.

maxiter : int, optional

Maximum number of iterations.

callback : callable, optional

Called after each iteration, as callback(xk), where xk is the current parameter vector.

maxls : int, optional

Maximum number of line search steps (per iteration). Default is 20.

Returns:
x : array_like

Estimated position of the minimum.

f : float

Value of func at the minimum.

d : dict

Information dictionary.

  • d[‘warnflag’] is
    • 0 if converged,
    • 1 if too many function evaluations or too many iterations,
    • 2 if stopped for another reason, given in d[‘task’]
  • d[‘grad’] is the gradient at the minimum (should be 0 ish)
  • d[‘funcalls’] is the number of function calls made.
  • d[‘nit’] is the number of iterations.

See also

minimize
Interface to minimization algorithms for multivariate functions. See the ‘L-BFGS-B’ method in particular. Note that the ftol option is made available via that interface, while factr is provided via this interface, where factr is the factor multiplying the default machine floating-point precision to arrive at ftol: ftol = factr * numpy.finfo(float).eps.

Notes

License of L-BFGS-B (FORTRAN code):

The version included here (in fortran code) is 3.0 (released April 25, 2011). It was written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal <nocedal@ece.nwu.edu>. It carries the following condition for use:

This software is freely available, but we expect that all publications describing work using this software, or all commercial products using it, quote at least one of the references given below. This software is released under the BSD License.

References

  • R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing, 16, 5, pp. 1190-1208.
  • C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, 23, 4, pp. 550 - 560.
  • J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (2011), ACM Transactions on Mathematical Software, 38, 1.

generalized_crossvalidation

dipy.reconst.qtdmri.generalized_crossvalidation(data, M, LR, startpoint=0.0005)

Generalized Cross Validation Function [1].

References

[1]Craven et al. “Smoothing Noisy Data with Spline Functions.” NUMER MATH 31.4 (1978): 377-403.

genlaguerre

dipy.reconst.qtdmri.genlaguerre(n, alpha, monic=False)

Generalized (associated) Laguerre polynomial.

Defined to be the solution of

\[x\frac{d^2}{dx^2}L_n^{(\alpha)} + (\alpha + 1 - x)\frac{d}{dx}L_n^{(\alpha)} + nL_n^{(\alpha)} = 0,\]

where \(\alpha > -1\); \(L_n^{(\alpha)}\) is a polynomial of degree \(n\).

Parameters:
n : int

Degree of the polynomial.

alpha : float

Parameter, must be greater than -1.

monic : bool, optional

If True, scale the leading coefficient to be 1. Default is False.

Returns:
L : orthopoly1d

Generalized Laguerre polynomial.

See also

laguerre
Laguerre polynomial.

Notes

For fixed \(\alpha\), the polynomials \(L_n^{(\alpha)}\) are orthogonal over \([0, \infty)\) with weight function \(e^{-x}x^\alpha\).

The Laguerre polynomials are the special case where \(\alpha = 0\).

gradient_table_from_gradient_strength_bvecs

dipy.reconst.qtdmri.gradient_table_from_gradient_strength_bvecs(gradient_strength, bvecs, big_delta, small_delta, b0_threshold=50, atol=0.01)

A general function for creating diffusion MR gradients.

It reads, loads and prepares scanner parameters like the b-values and b-vectors so that they can be useful during the reconstruction process.

Parameters:
gradient_strength : an array of shape (N,),

gradient strength given in T/mm

bvecs : can be any of two options
  1. an array of shape (N, 3) or (3, N) with the b-vectors.
  2. a path for the file which contains an array like the previous.
big_delta : float or array of shape (N,)

acquisition pulse separation time in seconds

small_delta : float

acquisition pulse duration time in seconds

b0_threshold : float

All b-values with values less than or equal to bo_threshold are considered as b0s i.e. without diffusion weighting.

atol : float

All b-vectors need to be unit vectors up to a tolerance.

Returns:
gradients : GradientTable

A GradientTable with all the gradient information.

Notes

  1. Often b0s (b-values which correspond to images without diffusion weighting) have 0 values however in some cases the scanner cannot provide b0s of an exact 0 value and it gives a bit higher values e.g. 6 or 12. This is the purpose of the b0_threshold in the __init__.
  2. We assume that the minimum number of b-values is 7.
  3. B-vectors should be unit vectors.

Examples

>>> from dipy.core.gradients import (
...    gradient_table_from_gradient_strength_bvecs)
>>> gradient_strength = .03e-3 * np.ones(7)  # clinical strength at 30 mT/m
>>> big_delta = .03  # pulse separation of 30ms
>>> small_delta = 0.01  # pulse duration of 10ms
>>> gradient_strength[0] = 0
>>> sq2 = np.sqrt(2) / 2
>>> bvecs = np.array([[0, 0, 0],
...                   [1, 0, 0],
...                   [0, 1, 0],
...                   [0, 0, 1],
...                   [sq2, sq2, 0],
...                   [sq2, 0, sq2],
...                   [0, sq2, sq2]])
>>> gt = gradient_table_from_gradient_strength_bvecs(
...     gradient_strength, bvecs, big_delta, small_delta)

l1_crossvalidation

dipy.reconst.qtdmri.l1_crossvalidation(b0s_mask, E, M, weight_array=array([0., 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4 ]))

cross-validation function to find the optimal weight of alpha for sparsity regularization

multi_voxel_fit

dipy.reconst.qtdmri.multi_voxel_fit(single_voxel_fit)

Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition

optional_package

dipy.reconst.qtdmri.optional_package(name, trip_msg=None)

Return package-like thing and module setup for package name

Parameters:
name : str

package name

trip_msg : None or str

message to give when someone tries to use the return package, but we could not import it, and have returned a TripWire object instead. Default message if None.

Returns:
pkg_like : module or TripWire instance

If we can import the package, return it. Otherwise return an object raising an error when accessed

have_pkg : bool

True if import for package was successful, false otherwise

module_setup : function

callable usually set as setup_module in calling namespace, to allow skipping tests.

part1_reg_matrix_tau

dipy.reconst.qtdmri.part1_reg_matrix_tau(ind_mat, ut)

Partial temporal Laplacian regularization matrix following Appendix B in [1].

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

part23_iso_reg_matrix_q

dipy.reconst.qtdmri.part23_iso_reg_matrix_q(ind_mat, us)

Partial spherical spatial Laplacian regularization matrix following the equation below Eq. (C4) in [1].

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

part23_reg_matrix_q

dipy.reconst.qtdmri.part23_reg_matrix_q(ind_mat, U_mat, T_mat, us)

Partial cartesian spatial Laplacian regularization matrix following second line of Eq. (B2) in [1].

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

part23_reg_matrix_tau

dipy.reconst.qtdmri.part23_reg_matrix_tau(ind_mat, ut)

Partial temporal Laplacian regularization matrix following Appendix B in [1].

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

part4_iso_reg_matrix_q

dipy.reconst.qtdmri.part4_iso_reg_matrix_q(ind_mat, us)

Partial spherical spatial Laplacian regularization matrix following the equation below Eq. (C4) in [1].

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

part4_reg_matrix_q

dipy.reconst.qtdmri.part4_reg_matrix_q(ind_mat, U_mat, us)

Partial cartesian spatial Laplacian regularization matrix following equation Eq. (B2) in [1].

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

part4_reg_matrix_tau

dipy.reconst.qtdmri.part4_reg_matrix_tau(ind_mat, ut)

Partial temporal Laplacian regularization matrix following Appendix B in [1].

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

qtdmri_anisotropic_scaling

dipy.reconst.qtdmri.qtdmri_anisotropic_scaling(data, q, bvecs, tau)

Constructs design matrix for fitting an exponential to the diffusion time points.

qtdmri_eap_matrix

dipy.reconst.qtdmri.qtdmri_eap_matrix(radial_order, time_order, us, ut, grid)

Constructs the design matrix as a product of 3 separated radial, angular and temporal design matrices. It precomputes the relevant basis orders for each one and finally puts them together according to the index matrix

qtdmri_eap_matrix_

dipy.reconst.qtdmri.qtdmri_eap_matrix_(radial_order, time_order, us, ut, grid, normalization=False)

qtdmri_index_matrix

dipy.reconst.qtdmri.qtdmri_index_matrix(radial_order, time_order)

Computes the SHORE basis order indices according to [1].

qtdmri_isotropic_eap_matrix

dipy.reconst.qtdmri.qtdmri_isotropic_eap_matrix(radial_order, time_order, us, ut, grid)

Constructs the design matrix as a product of 3 separated radial, angular and temporal design matrices. It precomputes the relevant basis orders for each one and finally puts them together according to the index matrix

qtdmri_isotropic_eap_matrix_

dipy.reconst.qtdmri.qtdmri_isotropic_eap_matrix_(radial_order, time_order, us, ut, grid, normalization=False)

qtdmri_isotropic_index_matrix

dipy.reconst.qtdmri.qtdmri_isotropic_index_matrix(radial_order, time_order)

Computes the SHORE basis order indices according to [1].

qtdmri_isotropic_laplacian_reg_matrix

dipy.reconst.qtdmri.qtdmri_isotropic_laplacian_reg_matrix(ind_mat, us, ut, part1_uq_iso_precomp=None, part1_ut_precomp=None, part23_ut_precomp=None, part4_ut_precomp=None, normalization=False)

Computes the spherical qt-dMRI Laplacian regularization matrix. If given, uses precomputed matrices for temporal and spatial regularization matrices to speed up computation. Follows the the formulation of Appendix C in [1].

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

qtdmri_isotropic_scaling

dipy.reconst.qtdmri.qtdmri_isotropic_scaling(data, q, tau)

Constructs design matrix for fitting an exponential to the diffusion time points.

qtdmri_isotropic_signal_matrix

dipy.reconst.qtdmri.qtdmri_isotropic_signal_matrix(radial_order, time_order, us, ut, q, tau)

qtdmri_isotropic_signal_matrix_

dipy.reconst.qtdmri.qtdmri_isotropic_signal_matrix_(radial_order, time_order, us, ut, q, tau, normalization=False)

qtdmri_isotropic_to_mapmri_matrix

dipy.reconst.qtdmri.qtdmri_isotropic_to_mapmri_matrix(radial_order, time_order, ut, tau)

Generates the matrix that maps the spherical qtdmri coefficients to MAP-MRI coefficients. The conversion is done by only evaluating the time basis for a diffusion time tau and summing up coefficients with the same spatial basis orders [1].

Parameters:
radial_order : unsigned int,

an even integer representing the spatial/radial order of the basis.

time_order : unsigned int,

an integer larger or equal than zero representing the time order of the basis.

ut : float

temporal scaling factor

tau : float

diffusion time (big_delta - small_delta / 3.) in seconds

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

qtdmri_laplacian_reg_matrix

dipy.reconst.qtdmri.qtdmri_laplacian_reg_matrix(ind_mat, us, ut, S_mat=None, T_mat=None, U_mat=None, part1_ut_precomp=None, part23_ut_precomp=None, part4_ut_precomp=None, normalization=False)

Computes the cartesian qt-dMRI Laplacian regularization matrix. If given, uses precomputed matrices for temporal and spatial regularization matrices to speed up computation. Follows the the formulation of Appendix B in [1].

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

qtdmri_mapmri_isotropic_normalization

dipy.reconst.qtdmri.qtdmri_mapmri_isotropic_normalization(j, l, u0)

Normalization factor for Spherical MAP-MRI basis. The normalization for a basis function with orders [j,l,m] depends only on orders j,l and the isotropic scale factor.

qtdmri_mapmri_normalization

dipy.reconst.qtdmri.qtdmri_mapmri_normalization(mu)

Normalization factor for Cartesian MAP-MRI basis. The scaling is the same for every basis function depending only on the spatial scaling mu.

qtdmri_number_of_coefficients

dipy.reconst.qtdmri.qtdmri_number_of_coefficients(radial_order, time_order)

Computes the total number of coefficients of the qtdmri basis given a radial and temporal order. Equation given below Eq (9) in [1].

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

qtdmri_signal_matrix

dipy.reconst.qtdmri.qtdmri_signal_matrix(radial_order, time_order, us, ut, q, tau)

Constructs the design matrix as a product of 3 separated radial, angular and temporal design matrices. It precomputes the relevant basis orders for each one and finally puts them together according to the index matrix

qtdmri_signal_matrix_

dipy.reconst.qtdmri.qtdmri_signal_matrix_(radial_order, time_order, us, ut, q, tau, normalization=False)

Function to generate the qtdmri signal basis.

qtdmri_temporal_normalization

dipy.reconst.qtdmri.qtdmri_temporal_normalization(ut)

Normalization factor for the temporal basis

qtdmri_to_mapmri_matrix

dipy.reconst.qtdmri.qtdmri_to_mapmri_matrix(radial_order, time_order, ut, tau)

Generates the matrix that maps the qtdmri coefficients to MAP-MRI coefficients. The conversion is done by only evaluating the time basis for a diffusion time tau and summing up coefficients with the same spatial basis orders [1].

Parameters:
radial_order : unsigned int,

an even integer representing the spatial/radial order of the basis.

time_order : unsigned int,

an integer larger or equal than zero representing the time order of the basis.

ut : float

temporal scaling factor

tau : float

diffusion time (big_delta - small_delta / 3.) in seconds

References

[1]Fick, Rutger HJ, et al. “Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time”, Medical Image Analysis, 2017.

radial_basis_EAP_opt

dipy.reconst.qtdmri.radial_basis_EAP_opt(j, l, us, r)

radial_basis_opt

dipy.reconst.qtdmri.radial_basis_opt(j, l, us, q)

Spatial basis dependent on spatial scaling factor us

real_sph_harm

dipy.reconst.qtdmri.real_sph_harm(m, n, theta, phi)

Compute real spherical harmonics.

Where the real harmonic \(Y^m_n\) is defined to be:

Imag(\(Y^m_n\)) * sqrt(2) if m > 0 \(Y^0_n\) if m = 0 Real(\(Y^|m|_n\)) * sqrt(2) if m < 0

This may take scalar or array arguments. The inputs will be broadcasted against each other.

Parameters:
m : int |m| <= n

The order of the harmonic.

n : int >= 0

The degree of the harmonic.

theta : float [0, 2*pi]

The azimuthal (longitudinal) coordinate.

phi : float [0, pi]

The polar (colatitudinal) coordinate.

Returns:
y_mn : real float

The real harmonic \(Y^m_n\) sampled at theta and phi.

See also

scipy.special.sph_harm

temporal_basis

dipy.reconst.qtdmri.temporal_basis(o, ut, tau)

Temporal basis dependent on temporal scaling factor ut

visualise_gradient_table_G_Delta_rainbow

dipy.reconst.qtdmri.visualise_gradient_table_G_Delta_rainbow(gtab, big_delta_start=None, big_delta_end=None, G_start=None, G_end=None, bval_isolines=array([ 0, 250, 1000, 2500, 5000, 7500, 10000, 14000]), alpha_shading=0.6)

This function visualizes a q-tau acquisition scheme as a function of gradient strength and pulse separation (big_delta). It represents every measurements at its G and big_delta position regardless of b-vector, with a background of b-value isolines for reference. It assumes there is only one unique pulse length (small_delta) in the acquisition scheme.

Parameters:
gtab : GradientTable object

constructed gradient table with big_delta and small_delta given as inputs.

big_delta_start : float,

optional minimum big_delta that is plotted in seconds

big_delta_end : float,

optional maximum big_delta that is plotted in seconds

G_start : float,

optional minimum gradient strength that is plotted in T/m

G_end : float,

optional maximum gradient strength taht is plotted in T/m

bval_isolines : array,

optional array of bvalue isolines that are plotted in the background

alpha_shading : float between [0-1]

optional shading of the bvalue colors in the background

warn

dipy.reconst.qtdmri.warn()

Issue a warning, or maybe ignore it or raise an exception.

Cache

class dipy.reconst.sfm.Cache

Bases: object

Cache values based on a key object (such as a sphere or gradient table).

Notes

This class is meant to be used as a mix-in:

class MyModel(Model, Cache):
    pass

class MyModelFit(Fit):
    pass

Inside a method on the fit, typical usage would be:

def odf(sphere):
    M = self.model.cache_get('odf_basis_matrix', key=sphere)

    if M is None:
        M = self._compute_basis_matrix(sphere)
        self.model.cache_set('odf_basis_matrix', key=sphere, value=M)

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

cache_clear()

Clear the cache.

cache_get(tag, key, default=None)

Retrieve a value from the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

default : object

Value to be returned if no cached entry is found.

Returns:
v : object

Value from the cache associated with (tag, key). Returns default if no cached entry is found.

cache_set(tag, key, value)

Store a value in the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

value : object

Value stored in the cache for each unique combination of (tag, key).

Examples

>>> def compute_expensive_matrix(parameters):
...     # Imagine the following computation is very expensive
...     return (p**2 for p in parameters)
>>> c = Cache()
>>> parameters = (1, 2, 3)
>>> X1 = compute_expensive_matrix(parameters)
>>> c.cache_set('expensive_matrix', parameters, X1)
>>> X2 = c.cache_get('expensive_matrix', parameters)
>>> X1 is X2
True

ExponentialIsotropicFit

class dipy.reconst.sfm.ExponentialIsotropicFit(model, params)

Bases: dipy.reconst.sfm.IsotropicFit

A fit to the ExponentialIsotropicModel object, based on data.

Methods

predict([gtab]) Predict the isotropic signal, based on a gradient table.
__init__(model, params)

Initialize an IsotropicFit object.

Parameters:
model : IsotropicModel class instance
params : ndarray

The mean isotropic model parameters (the mean diffusion-weighted signal in each voxel).

n_vox : int

The number of voxels for which the fit was done.

predict(gtab=None)

Predict the isotropic signal, based on a gradient table. In this case, the prediction will be for an exponential decay with the mean diffusivity derived from the data that was fit.

Parameters:
gtab : a GradientTable class instance (optional)

Defaults to use the gtab from the IsotropicModel from which this fit was derived.

ExponentialIsotropicModel

class dipy.reconst.sfm.ExponentialIsotropicModel(gtab)

Bases: dipy.reconst.sfm.IsotropicModel

Representing the isotropic signal as a fit to an exponential decay function with b-values

Methods

fit(data)
Parameters:
__init__(gtab)

Initialize an IsotropicModel.

Parameters:
gtab : a GradientTable class instance
fit(data)
Parameters:
data : ndarray
Returns:
ExponentialIsotropicFit class instance.

IsotropicFit

class dipy.reconst.sfm.IsotropicFit(model, params)

Bases: dipy.reconst.base.ReconstFit

A fit object for representing the isotropic signal as the mean of the diffusion-weighted signal.

Methods

predict([gtab]) Predict the isotropic signal.
__init__(model, params)

Initialize an IsotropicFit object.

Parameters:
model : IsotropicModel class instance
params : ndarray

The mean isotropic model parameters (the mean diffusion-weighted signal in each voxel).

n_vox : int

The number of voxels for which the fit was done.

predict(gtab=None)

Predict the isotropic signal.

Based on a gradient table. In this case, the (naive!) prediction will be the mean of the diffusion-weighted signal in the voxels.

Parameters:
gtab : a GradientTable class instance (optional)

Defaults to use the gtab from the IsotropicModel from which this fit was derived.

IsotropicModel

class dipy.reconst.sfm.IsotropicModel(gtab)

Bases: dipy.reconst.base.ReconstModel

A base-class for the representation of isotropic signals.

The default behavior, suitable for single b-value data is to calculate the mean in each voxel as an estimate of the signal that does not depend on direction.

Methods

fit(data) Fit an IsotropicModel.
__init__(gtab)

Initialize an IsotropicModel.

Parameters:
gtab : a GradientTable class instance
fit(data)

Fit an IsotropicModel.

This boils down to finding the mean diffusion-weighted signal in each voxel

Parameters:
data : ndarray
Returns:
IsotropicFit class instance.

ReconstFit

class dipy.reconst.sfm.ReconstFit(model, data)

Bases: object

Abstract class which holds the fit result of ReconstModel

For example that could be holding FA or GFA etc.

__init__(model, data)

Initialize self. See help(type(self)) for accurate signature.

ReconstModel

class dipy.reconst.sfm.ReconstModel(gtab)

Bases: object

Abstract class for signal reconstruction models

Methods

fit  
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data, mask=None, **kwargs)

SparseFascicleFit

class dipy.reconst.sfm.SparseFascicleFit(model, beta, S0, iso)

Bases: dipy.reconst.base.ReconstFit

Methods

odf(sphere) The orientation distribution function of the SFM
predict([gtab, response, S0]) Predict the signal based on the SFM parameters
__init__(model, beta, S0, iso)

Initalize a SparseFascicleFit class instance

Parameters:
model : a SparseFascicleModel object.
beta : ndarray

The parameters of fit to data.

S0 : ndarray

The mean non-diffusion-weighted signal.

iso : IsotropicFit class instance

A representation of the isotropic signal, together with parameters of the isotropic signal in each voxel, that is capable of deriving/predicting an isotropic signal, based on a gradient-table.

odf(sphere)

The orientation distribution function of the SFM

Parameters:
sphere : Sphere

The points in which the ODF is evaluated

Returns:
odf : ndarray of shape (x, y, z, sphere.vertices.shape[0])
predict(gtab=None, response=None, S0=None)

Predict the signal based on the SFM parameters

Parameters:
gtab : GradientTable, optional

The bvecs/bvals to predict the signal on. Default: the gtab from the model object.

response : list of 3 elements, optional

The eigenvalues of a tensor which will serve as a kernel function. Default: the response of the model object. Default to use model.response.

S0 : float or array, optional

The non-diffusion-weighted signal. Default: use the S0 of the data

Returns:
pred_sig : ndarray

The signal predicted in each voxel/direction

SparseFascicleModel

class dipy.reconst.sfm.SparseFascicleModel(gtab, sphere=None, response=[0.0015, 0.0005, 0.0005], solver='ElasticNet', l1_ratio=0.5, alpha=0.001, isotropic=None)

Bases: dipy.reconst.base.ReconstModel, dipy.reconst.cache.Cache

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
design_matrix() The design matrix for a SFM.
fit(data[, mask]) Fit the SparseFascicleModel object to data.
__init__(gtab, sphere=None, response=[0.0015, 0.0005, 0.0005], solver='ElasticNet', l1_ratio=0.5, alpha=0.001, isotropic=None)

Initialize a Sparse Fascicle Model

Parameters:
gtab : GradientTable class instance
sphere : Sphere class instance, optional

A sphere on which coefficients will be estimated. Default:

symmetric sphere with 362 points (from :mod:`dipy.data`).
response : (3,) array-like, optional

The eigenvalues of a canonical tensor to be used as the response function of single-fascicle signals. Default:[0.0015, 0.0005, 0.0005]

solver : string, dipy.core.optimize.SKLearnLinearSolver object, or sklearn.linear_model.base.LinearModel object, optional.

This will determine the algorithm used to solve the set of linear equations underlying this model. If it is a string it needs to be one of the following: {‘ElasticNet’, ‘NNLS’}. Otherwise, it can be an object that inherits from dipy.optimize.SKLearnLinearSolver. Default: ‘ElasticNet’.

l1_ratio : float, optional

Sets the balance betwee L1 and L2 regularization in ElasticNet [Zou2005]. Default: 0.5

alpha : float, optional

Sets the balance between least-squares error and L1/L2 regularization in ElasticNet [Zou2005]. Default: 0.001

isotropic : IsotropicModel class instance

This is a class that implements the function that calculates the value of the isotropic signal. This is a value of the signal that is independent of direction, and therefore removed from both sides of the SFM equation. The default is an instance of IsotropicModel, but other functions can be inherited from IsotropicModel to implement other fits to the aspects of the data that depend on b-value, but not on direction.

Notes

This is an implementation of the SFM, described in [Rokem2015].

[Rokem2014]Ariel Rokem, Jason D. Yeatman, Franco Pestilli, Kendrick N. Kay, Aviv Mezer, Stefan van der Walt, Brian A. Wandell (2014). Evaluating the accuracy of diffusion MRI models in white matter. PLoS ONE 10(4): e0123272. doi:10.1371/journal.pone.0123272
[Zou2005](1, 2) Zou H, Hastie T (2005). Regularization and variable selection via the elastic net. J R Stat Soc B:301-320
design_matrix()

The design matrix for a SFM.

Returns:
ndarray

The design matrix, where each column is a rotated version of the response function.

fit(data, mask=None)

Fit the SparseFascicleModel object to data.

Parameters:
data : array

The measured signal.

mask : array, optional

A boolean array used to mark the coordinates in the data that should be analyzed. Has the shape data.shape[:-1]. Default: None, which implies that all points should be analyzed.

Returns:
SparseFascicleFit object

auto_attr

dipy.reconst.sfm.auto_attr(func)

Decorator to create OneTimeProperty attributes.

Parameters:
func : method

The method that will be called the first time to compute a value. Afterwards, the method’s name will be a standard attribute holding the value of this computation.

Examples

>>> class MagicProp(object):
...     @auto_attr
...     def a(self):
...         return 99
...
>>> x = MagicProp()
>>> 'a' in x.__dict__
False
>>> x.a
99
>>> 'a' in x.__dict__
True

nanmean

dipy.reconst.sfm.nanmean(a, axis=None, dtype=None, out=None, keepdims=<no value>)

Compute the arithmetic mean along the specified axis, ignoring NaNs.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

For all-NaN slices, NaN is returned and a RuntimeWarning is raised.

New in version 1.8.0.

Parameters:
a : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is attempted.

axis : {int, tuple of int, None}, optional

Axis or axes along which the means are computed. The default is to compute the mean of the flattened array.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for inexact inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original a.

If the value is anything but the default, then keepdims will be passed through to the mean or sum methods of sub-classes of ndarray. If the sub-classes methods does not implement keepdims any exceptions will be raised.

Returns:
m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned. Nan is returned for slices that contain only NaNs.

See also

average
Weighted average
mean
Arithmetic mean taken while not ignoring NaNs

var, nanvar

Notes

The arithmetic mean is the sum of the non-NaN elements along the axis divided by the number of non-NaN elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32. Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanmean(a)
2.6666666666666665
>>> np.nanmean(a, axis=0)
array([ 2.,  4.])
>>> np.nanmean(a, axis=1)
array([ 1.,  3.5])

optional_package

dipy.reconst.sfm.optional_package(name, trip_msg=None)

Return package-like thing and module setup for package name

Parameters:
name : str

package name

trip_msg : None or str

message to give when someone tries to use the return package, but we could not import it, and have returned a TripWire object instead. Default message if None.

Returns:
pkg_like : module or TripWire instance

If we can import the package, return it. Otherwise return an object raising an error when accessed

have_pkg : bool

True if import for package was successful, false otherwise

module_setup : function

callable usually set as setup_module in calling namespace, to allow skipping tests.

sfm_design_matrix

dipy.reconst.sfm.sfm_design_matrix(gtab, sphere, response, mode='signal')

Construct the SFM design matrix

Parameters:
gtab : GradientTable or Sphere

Sets the rows of the matrix, if the mode is ‘signal’, this should be a GradientTable. If mode is ‘odf’ this should be a Sphere

sphere : Sphere

Sets the columns of the matrix

response : list of 3 elements

The eigenvalues of a tensor which will serve as a kernel function.

mode : str {‘signal’ | ‘odf’}, optional

Choose the (default) ‘signal’ for a design matrix containing predicted signal in the measurements defined by the gradient table for putative fascicles oriented along the vertices of the sphere. Otherwise, choose ‘odf’ for an odf convolution matrix, with values of the odf calculated from a tensor with the provided response eigenvalues, evaluated at the b-vectors in the gradient table, for the tensors with prinicipal diffusion directions along the vertices of the sphere.

Returns:
mat : ndarray

A design matrix that can be used for one of the following operations: when the ‘signal’ mode is used, each column contains the putative signal in each of the bvectors of the gtab if a fascicle is oriented in the direction encoded by the sphere vertex corresponding to this column. This is used for deconvolution with a measured DWI signal. If the ‘odf’ mode is chosen, each column instead contains the values of the tensor ODF for a tensor with a principal diffusion direction corresponding to this vertex. This is used to generate odfs from the fits of the SFM for the purpose of tracking.

Notes

[Rokem2015]Ariel Rokem, Jason D. Yeatman, Franco Pestilli, Kendrick N. Kay, Aviv Mezer, Stefan van der Walt, Brian A. Wandell (2015). Evaluating the accuracy of diffusion MRI models in white matter. PLoS ONE 10(4): e0123272. doi:10.1371/journal.pone.0123272
[Rokem2014]Ariel Rokem, Kimberly L. Chan, Jason D. Yeatman, Franco Pestilli, Brian A. Wandell (2014). Evaluating the accuracy of diffusion models at multiple b-values with cross-validation. ISMRM 2014.
[Behrens2007]Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW (2007): Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34:144-55.

Examples

>>> import dipy.data as dpd
>>> data, gtab = dpd.dsi_voxels()
>>> sphere = dpd.get_sphere()
>>> from dipy.reconst.sfm import sfm_design_matrix

A canonical tensor approximating corpus-callosum voxels [Rokem2014]:

>>> tensor_matrix = sfm_design_matrix(gtab, sphere,
...                                   [0.0015, 0.0005, 0.0005])

A ‘stick’ function ([Behrens2007]):

>>> stick_matrix = sfm_design_matrix(gtab, sphere, [0.001, 0, 0])

Cache

class dipy.reconst.shm.Cache

Bases: object

Cache values based on a key object (such as a sphere or gradient table).

Notes

This class is meant to be used as a mix-in:

class MyModel(Model, Cache):
    pass

class MyModelFit(Fit):
    pass

Inside a method on the fit, typical usage would be:

def odf(sphere):
    M = self.model.cache_get('odf_basis_matrix', key=sphere)

    if M is None:
        M = self._compute_basis_matrix(sphere)
        self.model.cache_set('odf_basis_matrix', key=sphere, value=M)

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

cache_clear()

Clear the cache.

cache_get(tag, key, default=None)

Retrieve a value from the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

default : object

Value to be returned if no cached entry is found.

Returns:
v : object

Value from the cache associated with (tag, key). Returns default if no cached entry is found.

cache_set(tag, key, value)

Store a value in the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

value : object

Value stored in the cache for each unique combination of (tag, key).

Examples

>>> def compute_expensive_matrix(parameters):
...     # Imagine the following computation is very expensive
...     return (p**2 for p in parameters)
>>> c = Cache()
>>> parameters = (1, 2, 3)
>>> X1 = compute_expensive_matrix(parameters)
>>> c.cache_set('expensive_matrix', parameters, X1)
>>> X2 = c.cache_get('expensive_matrix', parameters)
>>> X1 is X2
True

CsaOdfModel

class dipy.reconst.shm.CsaOdfModel(gtab, sh_order, smooth=0.006, min_signal=1.0, assume_normed=False)

Bases: dipy.reconst.shm.QballBaseModel

Implementation of Constant Solid Angle reconstruction method.

References

[1]Aganj, I., et al. 2009. ODF Reconstruction in Q-Ball Imaging With Solid Angle Consideration.

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fits the model to diffusion data and returns the model fit
sampling_matrix(sphere) The matrix needed to sample ODFs from coefficients of the model.
__init__(gtab, sh_order, smooth=0.006, min_signal=1.0, assume_normed=False)

Creates a model that can be used to fit or sample diffusion data

See also

normalize_data

max = 0.999
min = 0.001

LooseVersion

class dipy.reconst.shm.LooseVersion(vstring=None)

Bases: distutils.version.Version

Version numbering for anarchists and software realists. Implements the standard interface for version number classes as described above. A version number consists of a series of numbers, separated by either periods or strings of letters. When comparing version numbers, the numeric components will be compared numerically, and the alphabetic components lexically. The following are all valid version numbers, in no particular order:

1.5.1 1.5.2b2 161 3.10a 8.02 3.4j 1996.07.12 3.2.pl0 3.1.1.6 2g6 11g 0.960923 2.2beta29 1.13++ 5.5.kw 2.0b1pl0

In fact, there is no such thing as an invalid version number under this scheme; the rules for comparison are simple and predictable, but may not always give the results you want (for some definition of “want”).

Methods

parse  
__init__(vstring=None)

Initialize self. See help(type(self)) for accurate signature.

component_re = re.compile('(\\d+ | [a-z]+ | \\.)', re.VERBOSE)
parse(vstring)

OdfFit

class dipy.reconst.shm.OdfFit(model, data)

Bases: dipy.reconst.base.ReconstFit

Methods

odf(sphere) To be implemented but specific odf models
__init__(model, data)

Initialize self. See help(type(self)) for accurate signature.

odf(sphere)

To be implemented but specific odf models

OdfModel

class dipy.reconst.shm.OdfModel(gtab)

Bases: dipy.reconst.base.ReconstModel

An abstract class to be sub-classed by specific odf models

All odf models should provide a fit method which may take data as it’s first and only argument.

Methods

fit(data) To be implemented by specific odf models
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
fit(data)

To be implemented by specific odf models

OpdtModel

class dipy.reconst.shm.OpdtModel(gtab, sh_order, smooth=0.006, min_signal=1.0, assume_normed=False)

Bases: dipy.reconst.shm.QballBaseModel

Implementation of Orientation Probability Density Transform reconstruction method.

References

[1]Tristan-Vega, A., et al. 2010. A new methodology for estimation of fiber populations in white matter of the brain with Funk-Radon transform.
[2]Tristan-Vega, A., et al. 2009. Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging.

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fits the model to diffusion data and returns the model fit
sampling_matrix(sphere) The matrix needed to sample ODFs from coefficients of the model.
__init__(gtab, sh_order, smooth=0.006, min_signal=1.0, assume_normed=False)

Creates a model that can be used to fit or sample diffusion data

See also

normalize_data

QballBaseModel

class dipy.reconst.shm.QballBaseModel(gtab, sh_order, smooth=0.006, min_signal=1.0, assume_normed=False)

Bases: dipy.reconst.shm.SphHarmModel

To be subclassed by Qball type models.

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fits the model to diffusion data and returns the model fit
sampling_matrix(sphere) The matrix needed to sample ODFs from coefficients of the model.
__init__(gtab, sh_order, smooth=0.006, min_signal=1.0, assume_normed=False)

Creates a model that can be used to fit or sample diffusion data

See also

normalize_data

fit(data, mask=None)

Fits the model to diffusion data and returns the model fit

QballModel

class dipy.reconst.shm.QballModel(gtab, sh_order, smooth=0.006, min_signal=1.0, assume_normed=False)

Bases: dipy.reconst.shm.QballBaseModel

Implementation of regularized Qball reconstruction method.

References

[1]Descoteaux, M., et al. 2007. Regularized, fast, and robust analytical Q-ball imaging.

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fits the model to diffusion data and returns the model fit
sampling_matrix(sphere) The matrix needed to sample ODFs from coefficients of the model.
__init__(gtab, sh_order, smooth=0.006, min_signal=1.0, assume_normed=False)

Creates a model that can be used to fit or sample diffusion data

See also

normalize_data

ResidualBootstrapWrapper

class dipy.reconst.shm.ResidualBootstrapWrapper(signal_object, B, where_dwi, min_signal=1.0)

Bases: object

Returns a residual bootstrap sample of the signal_object when indexed

Wraps a signal_object, this signal object can be an interpolator. When indexed, the the wrapper indexes the signal_object to get the signal. There wrapper than samples the residual boostrap distribution of signal and returns that sample.

__init__(signal_object, B, where_dwi, min_signal=1.0)

Builds a ResidualBootstrapWapper

Given some linear model described by B, the design matrix, and a signal_object, returns an object which can sample the residual bootstrap distribution of the signal. We assume that the signals are normalized so we clip the bootsrap samples to be between min_signal and 1.

Parameters:
signal_object : some object that can be indexed

This object should return diffusion weighted signals when indexed.

B : ndarray, ndim=2

The design matrix of the spherical harmonics model used to fit the data. This is the model that will be used to compute the residuals and sample the residual bootstrap distribution

where_dwi :

indexing object to find diffusion weighted signals from signal

min_signal : float

The lowest allowable signal.

SphHarmFit

class dipy.reconst.shm.SphHarmFit(model, shm_coef, mask)

Bases: dipy.reconst.odf.OdfFit

Diffusion data fit to a spherical harmonic model

Attributes:
shape
shm_coeff

The spherical harmonic coefficients of the odf

Methods

odf(sphere) Samples the odf function on the points of a sphere
predict([gtab, S0]) Predict the diffusion signal from the model coefficients.
gfa  
__init__(model, shm_coef, mask)

Initialize self. See help(type(self)) for accurate signature.

gfa()
odf(sphere)

Samples the odf function on the points of a sphere

Parameters:
sphere : Sphere

The points on which to sample the odf.

Returns:
values : ndarray

The value of the odf on each point of sphere.

predict(gtab=None, S0=1.0)

Predict the diffusion signal from the model coefficients.

Parameters:
gtab : a GradientTable class instance

The directions and bvalues on which prediction is desired

S0 : float array

The mean non-diffusion-weighted signal in each voxel. Default: 1.0 in all voxels

shape
shm_coeff

The spherical harmonic coefficients of the odf

Make this a property for now, if there is a usecase for modifying the coefficients we can add a setter or expose the coefficients more directly

SphHarmModel

class dipy.reconst.shm.SphHarmModel(gtab)

Bases: dipy.reconst.odf.OdfModel, dipy.reconst.cache.Cache

To be subclassed by all models that return a SphHarmFit when fit.

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data) To be implemented by specific odf models
sampling_matrix(sphere) The matrix needed to sample ODFs from coefficients of the model.
__init__(gtab)

Initialization of the abstract class for signal reconstruction models

Parameters:
gtab : GradientTable class instance
sampling_matrix(sphere)

The matrix needed to sample ODFs from coefficients of the model.

Parameters:
sphere : Sphere

Points used to sample ODF.

Returns:
sampling_matrix : array

The size of the matrix will be (N, M) where N is the number of vertices on sphere and M is the number of coefficients needed by the model.

anisotropic_power

dipy.reconst.shm.anisotropic_power(sh_coeffs, norm_factor=1e-05, power=2, non_negative=True)

Calculates anisotropic power map with a given SH coefficient matrix

Parameters:
sh_coeffs : ndarray

A ndarray where the last dimension is the SH coefficients estimates for that voxel.

norm_factor: float, optional

The value to normalize the ap values. Default is 10^-5.

power : int, optional

The degree to which power maps are calculated. Default: 2.

non_negative: bool, optional

Whether to rectify the resulting map to be non-negative. Default: True.

Returns:
log_ap : ndarray

The log of the resulting power image.

rac{1}{2l+1} sum_{m=-l}^l{|a_{l,m}|^n}}

Where the last dimension, C, is made of a flattened array of \(l`x:math:`m\) coefficients, where \(l\) are the SH orders, and \(m = 2l+1\), So l=1 has 1 coeffecient, l=2 has 5, … l=8 has 17 and so on. A l=2 SH coefficient matrix will then be composed of a IxJxKx6 volume. The power, \(n\) is usually set to \(n=2\).

The final AP image is then shifted by -log(norm_factor), to be strictly non-negative. Remaining values < 0 are discarded (set to 0), per default, and this option is controlled through the non_negative keyword argument.

auto_attr

dipy.reconst.shm.auto_attr(func)

Decorator to create OneTimeProperty attributes.

Parameters:
func : method

The method that will be called the first time to compute a value. Afterwards, the method’s name will be a standard attribute holding the value of this computation.

Examples

>>> class MagicProp(object):
...     @auto_attr
...     def a(self):
...         return 99
...
>>> x = MagicProp()
>>> 'a' in x.__dict__
False
>>> x.a
99
>>> 'a' in x.__dict__
True

bootstrap_data_array

dipy.reconst.shm.bootstrap_data_array(data, H, R, permute=None)

Applies the Residual Bootstraps to the data given H and R

data must be normalized, ie 0 < data <= 1

This function, and the bootstrap_data_voxel function, calculate residual-bootsrap samples given a Hat matrix and a Residual matrix. These samples can be used for non-parametric statistics or for bootstrap probabilistic tractography:

References

[1]J. I. Berman, et al., “Probabilistic streamline q-ball tractography using the residual bootstrap” 2008.
[2]HA Haroon, et al., “Using the model-based residual bootstrap to quantify uncertainty in fiber orientations from Q-ball analysis” 2009.
[3]B. Jeurissen, et al., “Probabilistic Fiber Tracking Using the Residual Bootstrap with Constrained Spherical Deconvolution” 2011.

bootstrap_data_voxel

dipy.reconst.shm.bootstrap_data_voxel(data, H, R, permute=None)

Like bootstrap_data_array but faster when for a single voxel

data must be 1d and normalized

calculate_max_order

dipy.reconst.shm.calculate_max_order(n_coeffs)
Calculate the maximal harmonic order, given that you know the
number of parameters that were estimated.
Parameters:
n_coeffs : int

The number of SH coefficients

Returns:
L : int

The maximal SH order, given the number of coefficients

rac{1}{2} (L+1) (L+2)

arrow 2n = L^2 + 3L + 2

arrow L^2 + 3L + 2 - 2n = 0

arrow L^2 + 3L + 2(1-n) = 0

arrow L_{1,2} = rac{-3 pm sqrt{9 - 8 (1-n)}}{2}

arrow L{1,2} = rac{-3 pm sqrt{1 + 8n}}{2}

Finally, the positive value is chosen between the two options.

cart2sphere

dipy.reconst.shm.cart2sphere(x, y, z)

Return angles for Cartesian 3D coordinates x, y, and z

See doc for sphere2cart for angle conventions and derivation of the formulae.

\(0\le\theta\mathrm{(theta)}\le\pi\) and \(-\pi\le\phi\mathrm{(phi)}\le\pi\)

Parameters:
x : array_like

x coordinate in Cartesian space

y : array_like

y coordinate in Cartesian space

z : array_like

z coordinate

Returns:
r : array

radius

theta : array

inclination (polar) angle

phi : array

azimuth angle

concatenate

dipy.reconst.shm.concatenate((a1, a2, ...), axis=0, out=None)

Join a sequence of arrays along an existing axis.

Parameters:
a1, a2, … : sequence of array_like

The arrays must have the same shape, except in the dimension corresponding to axis (the first, by default).

axis : int, optional

The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0.

out : ndarray, optional

If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified.

Returns:
res : ndarray

The concatenated array.

See also

ma.concatenate
Concatenate function that preserves input masks.
array_split
Split an array into multiple sub-arrays of equal or near-equal size.
split
Split array into a list of multiple sub-arrays of equal size.
hsplit
Split array into multiple sub-arrays horizontally (column wise)
vsplit
Split array into multiple sub-arrays vertically (row wise)
dsplit
Split array into multiple sub-arrays along the 3rd axis (depth).
stack
Stack a sequence of arrays along a new axis.
hstack
Stack arrays in sequence horizontally (column wise)
vstack
Stack arrays in sequence vertically (row wise)
dstack
Stack arrays in sequence depth wise (along third dimension)

Notes

When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected as input, use the ma.concatenate function from the masked array module instead.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
       [3, 4],
       [5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
       [3, 4, 6]])
>>> np.concatenate((a, b), axis=None)
array([1, 2, 3, 4, 5, 6])

This function will not preserve masking of MaskedArray inputs.

>>> a = np.ma.arange(3)
>>> a[1] = np.ma.masked
>>> b = np.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],
             mask = [False  True False],
       fill_value = 999999)
>>> b
array([2, 3, 4])
>>> np.concatenate([a, b])
masked_array(data = [0 1 2 2 3 4],
             mask = False,
       fill_value = 999999)
>>> np.ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],
             mask = [False  True False False False False],
       fill_value = 999999)

diag

dipy.reconst.shm.diag(v, k=0)

Extract a diagonal or construct a diagonal array.

See the more detailed documentation for numpy.diagonal if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using.

Parameters:
v : array_like

If v is a 2-D array, return a copy of its k-th diagonal. If v is a 1-D array, return a 2-D array with v on the k-th diagonal.

k : int, optional

Diagonal in question. The default is 0. Use k>0 for diagonals above the main diagonal, and k<0 for diagonals below the main diagonal.

Returns:
out : ndarray

The extracted diagonal or constructed diagonal array.

See also

diagonal
Return specified diagonals.
diagflat
Create a 2-D array with the flattened input as a diagonal.
trace
Sum along diagonals.
triu
Upper triangle of an array.
tril
Lower triangle of an array.

Examples

>>> x = np.arange(9).reshape((3,3))
>>> x
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> np.diag(x)
array([0, 4, 8])
>>> np.diag(x, k=1)
array([1, 5])
>>> np.diag(x, k=-1)
array([3, 7])
>>> np.diag(np.diag(x))
array([[0, 0, 0],
       [0, 4, 0],
       [0, 0, 8]])

diff

dipy.reconst.shm.diff(a, n=1, axis=-1)

Calculate the n-th discrete difference along the given axis.

The first difference is given by out[n] = a[n+1] - a[n] along the given axis, higher differences are calculated by using diff recursively.

Parameters:
a : array_like

Input array

n : int, optional

The number of times values are differenced. If zero, the input is returned as-is.

axis : int, optional

The axis along which the difference is taken, default is the last axis.

Returns:
diff : ndarray

The n-th differences. The shape of the output is the same as a except along axis where the dimension is smaller by n. The type of the output is the same as the type of the difference between any two elements of a. This is the same as the type of a in most cases. A notable exception is datetime64, which results in a timedelta64 output array.

See also

gradient, ediff1d, cumsum

Notes

Type is preserved for boolean arrays, so the result will contain False when consecutive elements are the same and True when they differ.

For unsigned integer arrays, the results will also be unsigned. This should not be surprising, as the result is consistent with calculating the difference directly:

>>> u8_arr = np.array([1, 0], dtype=np.uint8)
>>> np.diff(u8_arr)
array([255], dtype=uint8)
>>> u8_arr[1,...] - u8_arr[0,...]
array(255, np.uint8)

If this is not desirable, then the array should be cast to a larger integer type first:

>>> i16_arr = u8_arr.astype(np.int16)
>>> np.diff(i16_arr)
array([-1], dtype=int16)

Examples

>>> x = np.array([1, 2, 4, 7, 0])
>>> np.diff(x)
array([ 1,  2,  3, -7])
>>> np.diff(x, n=2)
array([  1,   1, -10])
>>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]])
>>> np.diff(x)
array([[2, 3, 4],
       [5, 1, 2]])
>>> np.diff(x, axis=0)
array([[-1,  2,  0, -2]])
>>> x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64)
>>> np.diff(x)
array([1, 1], dtype='timedelta64[D]')

dot

dipy.reconst.shm.dot(a, b, out=None)

Dot product of two arrays. Specifically,

  • If both a and b are 1-D arrays, it is inner product of vectors (without complex conjugation).

  • If both a and b are 2-D arrays, it is matrix multiplication, but using matmul() or a @ b is preferred.

  • If either a or b is 0-D (scalar), it is equivalent to multiply() and using numpy.multiply(a, b) or a * b is preferred.

  • If a is an N-D array and b is a 1-D array, it is a sum product over the last axis of a and b.

  • If a is an N-D array and b is an M-D array (where M>=2), it is a sum product over the last axis of a and the second-to-last axis of b:

    dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
    
Parameters:
a : array_like

First argument.

b : array_like

Second argument.

out : ndarray, optional

Output argument. This must have the exact kind that would be returned if it was not used. In particular, it must have the right type, must be C-contiguous, and its dtype must be the dtype that would be returned for dot(a,b). This is a performance feature. Therefore, if these conditions are not met, an exception is raised, instead of attempting to be flexible.

Returns:
output : ndarray

Returns the dot product of a and b. If a and b are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. If out is given, then it is returned.

Raises:
ValueError

If the last dimension of a is not the same size as the second-to-last dimension of b.

See also

vdot
Complex-conjugating dot product.
tensordot
Sum products over arbitrary axes.
einsum
Einstein summation convention.
matmul
‘@’ operator as method with out parameter.

Examples

>>> np.dot(3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot([2j, 3j], [2j, 3j])
(-13+0j)

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],
       [2, 2]])
>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128

empty

dipy.reconst.shm.empty(shape, dtype=float, order='C')

Return a new array of given shape and type, without initializing entries.

Parameters:
shape : int or tuple of int

Shape of the empty array, e.g., (2, 3) or 2.

dtype : data-type, optional

Desired output data-type for the array, e.g, numpy.int8. Default is numpy.float64.

order : {‘C’, ‘F’}, optional, default: ‘C’

Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.

Returns:
out : ndarray

Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object arrays will be initialized to None.

See also

empty_like
Return an empty array with shape and type of input.
ones
Return a new array setting values to one.
zeros
Return a new array setting values to zero.
full
Return a new array of given shape filled with value.

Notes

empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the other hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty([2, 2])
array([[ -9.74499359e+001,   6.69583040e-309],
       [  2.13182611e-314,   3.06959433e-309]])         #random
>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],
       [  496041986,    19249760]])                     #random

eye

dipy.reconst.shm.eye(N, M=None, k=0, dtype=<class 'float'>, order='C')

Return a 2-D array with ones on the diagonal and zeros elsewhere.

Parameters:
N : int

Number of rows in the output.

M : int, optional

Number of columns in the output. If None, defaults to N.

k : int, optional

Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal.

dtype : data-type, optional

Data-type of the returned array.

order : {‘C’, ‘F’}, optional

Whether the output should be stored in row-major (C-style) or column-major (Fortran-style) order in memory.

New in version 1.14.0.

Returns:
I : ndarray of shape (N,M)

An array where all elements are equal to zero, except for the k-th diagonal, whose values are equal to one.

See also

identity
(almost) equivalent function
diag
diagonal 2-D array from a 1-D array specified by the user.

Examples

>>> np.eye(2, dtype=int)
array([[1, 0],
       [0, 1]])
>>> np.eye(3, k=1)
array([[ 0.,  1.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  0.]])

forward_sdeconv_mat

dipy.reconst.shm.forward_sdeconv_mat(r_rh, n)

Build forward spherical deconvolution matrix

Parameters:
r_rh : ndarray

Rotational harmonics coefficients for the single fiber response function. Each element rh[i] is associated with spherical harmonics of degree 2*i.

n : ndarray

The degree of spherical harmonic function associated with each row of the deconvolution matrix. Only even degrees are allowed

Returns:
R : ndarray (N, N)

Deconvolution matrix with shape (N, N)

gen_dirac

dipy.reconst.shm.gen_dirac(m, n, theta, phi)

Generate Dirac delta function orientated in (theta, phi) on the sphere

The spherical harmonics (SH) representation of this Dirac is returned as coefficients to spherical harmonic functions produced by shm.real_sph_harm.

Parameters:
m : ndarray (N,)

The order of the spherical harmonic function associated with each coefficient.

n : ndarray (N,)

The degree of the spherical harmonic function associated with each coefficient.

theta : float [0, 2*pi]

The azimuthal (longitudinal) coordinate.

phi : float [0, pi]

The polar (colatitudinal) coordinate.

Returns:
dirac : ndarray

SH coefficients representing the Dirac function. The shape of this is (m + 2) * (m + 1) / 2.

See also

shm.real_sph_harm, shm.real_sym_sh_basis

hat

dipy.reconst.shm.hat(B)

Returns the hat matrix for the design matrix B

lazy_index

dipy.reconst.shm.lazy_index(index)

Produces a lazy index

Returns a slice that can be used for indexing an array, if no slice can be made index is returned as is.

lcr_matrix

dipy.reconst.shm.lcr_matrix(H)

Returns a matrix for computing leveraged, centered residuals from data

if r = (d-Hd), the leveraged centered residuals are lcr = (r/l)-mean(r/l) ruturns the matrix R, such lcr = Rd

lpn

dipy.reconst.shm.lpn(n, z)

Legendre function of the first kind.

Compute sequence of Legendre functions of the first kind (polynomials), Pn(z) and derivatives for all degrees from 0 to n (inclusive).

See also special.legendre for polynomial class.

References

[1]Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

normalize_data

dipy.reconst.shm.normalize_data(data, where_b0, min_signal=1.0, out=None)

Normalizes the data with respect to the mean b0

order_from_ncoef

dipy.reconst.shm.order_from_ncoef(ncoef)

Given a number n of coefficients, calculate back the sh_order

pinv

dipy.reconst.shm.pinv(a, rcond=1e-15)

Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all large singular values.

Changed in version 1.14: Can now operate on stacks of matrices

Parameters:
a : (…, M, N) array_like

Matrix or stack of matrices to be pseudo-inverted.

rcond : (…) array_like of float

Cutoff for small singular values. Singular values smaller (in modulus) than rcond * largest_singular_value (again, in modulus) are set to zero. Broadcasts against the stack of matrices

Returns:
B : (…, N, M) ndarray

The pseudo-inverse of a. If a is a matrix instance, then so is B.

Raises:
LinAlgError

If the SVD computation does not converge.

Notes

The pseudo-inverse of a matrix A, denoted \(A^+\), is defined as: “the matrix that ‘solves’ [the least-squares problem] \(Ax = b\),” i.e., if \(\bar{x}\) is said solution, then \(A^+\) is that matrix such that \(\bar{x} = A^+b\).

It can be shown that if \(Q_1 \Sigma Q_2^T = A\) is the singular value decomposition of A, then \(A^+ = Q_2 \Sigma^+ Q_1^T\), where \(Q_{1,2}\) are orthogonal matrices, \(\Sigma\) is a diagonal matrix consisting of A’s so-called singular values, (followed, typically, by zeros), and then \(\Sigma^+\) is simply the diagonal matrix consisting of the reciprocals of A’s singular values (again, followed by zeros). [1]

References

[1](1, 2) G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142.

Examples

The following example checks that a * a+ * a == a and a+ * a * a+ == a+:

>>> a = np.random.randn(9, 6)
>>> B = np.linalg.pinv(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

randint

dipy.reconst.shm.randint(low, high=None, size=None, dtype='l')

Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval [low, high). If high is None (the default), then results are from [0, low).

Parameters:
low : int

Lowest (signed) integer to be drawn from the distribution (unless high=None, in which case this parameter is one above the highest such integer).

high : int, optional

If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if high=None).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.

dtype : dtype, optional

Desired dtype of the result. All dtypes are determined by their name, i.e., ‘int64’, ‘int’, etc, so byteorder is not available and a specific precision may have different C types depending on the platform. The default value is ‘np.int’.

New in version 1.11.0.

Returns:
out : int or ndarray of ints

size-shaped array of random integers from the appropriate distribution, or a single such random int if size not provided.

See also

random.random_integers
similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted. In particular, this other one is the one to use to generate uniformly distributed discrete non-integers.

Examples

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],
       [3, 2, 2, 0]])

real_sph_harm

dipy.reconst.shm.real_sph_harm(m, n, theta, phi)

Compute real spherical harmonics.

Where the real harmonic \(Y^m_n\) is defined to be:

Imag(\(Y^m_n\)) * sqrt(2) if m > 0 \(Y^0_n\) if m = 0 Real(\(Y^|m|_n\)) * sqrt(2) if m < 0

This may take scalar or array arguments. The inputs will be broadcasted against each other.

Parameters:
m : int |m| <= n

The order of the harmonic.

n : int >= 0

The degree of the harmonic.

theta : float [0, 2*pi]

The azimuthal (longitudinal) coordinate.

phi : float [0, pi]

The polar (colatitudinal) coordinate.

Returns:
y_mn : real float

The real harmonic \(Y^m_n\) sampled at theta and phi.

See also

scipy.special.sph_harm

real_sym_sh_basis

dipy.reconst.shm.real_sym_sh_basis(sh_order, theta, phi)

Samples a real symmetric spherical harmonic basis at point on the sphere

Samples the basis functions up to order sh_order at points on the sphere given by theta and phi. The basis functions are defined here the same way as in Descoteaux et al. 2007 [1] where the real harmonic \(Y^m_n\) is defined to be:

Imag(\(Y^m_n\)) * sqrt(2) if m > 0 \(Y^0_n\) if m = 0 Real(\(Y^|m|_n\)) * sqrt(2) if m < 0

This may take scalar or array arguments. The inputs will be broadcasted against each other.

Parameters:
sh_order : int

even int > 0, max spherical harmonic degree

theta : float [0, 2*pi]

The azimuthal (longitudinal) coordinate.

phi : float [0, pi]

The polar (colatitudinal) coordinate.

Returns:
y_mn : real float

The real harmonic \(Y^m_n\) sampled at theta and phi

m : array

The order of the harmonics.

n : array

The degree of the harmonics.

References

[1](1, 2) Descoteaux, M., Angelino, E., Fitzgibbons, S. and Deriche, R. Regularized, Fast, and Robust Analytical Q-ball Imaging. Magn. Reson. Med. 2007;58:497-510.

real_sym_sh_mrtrix

dipy.reconst.shm.real_sym_sh_mrtrix(sh_order, theta, phi)

Compute real spherical harmonics as in Tournier 2007 [2], where the real harmonic \(Y^m_n\) is defined to be:

Real(:math:`Y^m_n`)       if m > 0
:math:`Y^0_n`             if m = 0
Imag(:math:`Y^|m|_n`)     if m < 0

This may take scalar or array arguments. The inputs will be broadcasted against each other.

Parameters:
sh_order : int

The maximum degree or the spherical harmonic basis.

theta : float [0, pi]

The polar (colatitudinal) coordinate.

phi : float [0, 2*pi]

The azimuthal (longitudinal) coordinate.

Returns:
y_mn : real float

The real harmonic \(Y^m_n\) sampled at theta and phi as implemented in mrtrix. Warning: the basis is Tournier et al. 2007 [2]; 2004 [1] is slightly different.

m : array

The order of the harmonics.

n : array

The degree of the harmonics.

References

[1](1, 2) Tournier J.D., Calamante F., Gadian D.G. and Connelly A. Direct estimation of the fibre orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage. 2004;23:1176-1185.
[2](1, 2, 3, 4) Tournier J.D., Calamante F. and Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35(4):1459-1472.

sf_to_sh

dipy.reconst.shm.sf_to_sh(sf, sphere, sh_order=4, basis_type=None, smooth=0.0)

Spherical function to spherical harmonics (SH).

Parameters:
sf : ndarray

Values of a function on the given sphere.

sphere : Sphere

The points on which the sf is defined.

sh_order : int, optional

Maximum SH order in the SH fit. For sh_order, there will be (sh_order + 1) * (sh_order_2) / 2 SH coefficients (default 4).

basis_type : {None, ‘tournier07’, ‘descoteaux07’}

None for the default DIPY basis, tournier07 for the Tournier 2007 [2] basis, and descoteaux07 for the Descoteaux 2007 [1] basis (None defaults to descoteaux07).

smooth : float, optional

Lambda-regularization in the SH fit (default 0.0).

Returns:
sh : ndarray

SH coefficients representing the input function.

References

[1](1, 2) Descoteaux, M., Angelino, E., Fitzgibbons, S. and Deriche, R. Regularized, Fast, and Robust Analytical Q-ball Imaging. Magn. Reson. Med. 2007;58:497-510.
[2](1, 2) Tournier J.D., Calamante F. and Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35(4):1459-1472.

sh_to_rh

dipy.reconst.shm.sh_to_rh(r_sh, m, n)

Spherical harmonics (SH) to rotational harmonics (RH)

Calculate the rotational harmonic decomposition up to harmonic order m, degree n for an axially and antipodally symmetric function. Note that all m != 0 coefficients will be ignored as axial symmetry is assumed. Hence, there will be (sh_order/2 + 1) non-zero coefficients.

Parameters:
r_sh : ndarray (N,)

ndarray of SH coefficients for the single fiber response function. These coefficients must correspond to the real spherical harmonic functions produced by shm.real_sph_harm.

m : ndarray (N,)

The order of the spherical harmonic function associated with each coefficient.

n : ndarray (N,)

The degree of the spherical harmonic function associated with each coefficient.

Returns:
r_rh : ndarray ((sh_order + 1)*(sh_order + 2)/2,)

Rotational harmonics coefficients representing the input r_sh

See also

shm.real_sph_harm, shm.real_sym_sh_basis

References

[1]Tournier, J.D., et al. NeuroImage 2007. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution

sh_to_sf

dipy.reconst.shm.sh_to_sf(sh, sphere, sh_order, basis_type=None)

Spherical harmonics (SH) to spherical function (SF).

Parameters:
sh : ndarray

SH coefficients representing a spherical function.

sphere : Sphere

The points on which to sample the spherical function.

sh_order : int, optional

Maximum SH order in the SH fit. For sh_order, there will be (sh_order + 1) * (sh_order_2) / 2 SH coefficients (default 4).

basis_type : {None, ‘tournier07’, ‘descoteaux07’}

None for the default DIPY basis, tournier07 for the Tournier 2007 [2] basis, and descoteaux07 for the Descoteaux 2007 [1] basis (None defaults to descoteaux07).

Returns:
sf : ndarray

Spherical function values on the sphere.

References

[1](1, 2) Descoteaux, M., Angelino, E., Fitzgibbons, S. and Deriche, R. Regularized, Fast, and Robust Analytical Q-ball Imaging. Magn. Reson. Med. 2007;58:497-510.
[2](1, 2) Tournier J.D., Calamante F. and Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35(4):1459-1472.

sh_to_sf_matrix

dipy.reconst.shm.sh_to_sf_matrix(sphere, sh_order, basis_type=None, return_inv=True, smooth=0)

Matrix that transforms Spherical harmonics (SH) to spherical function (SF).

Parameters:
sphere : Sphere

The points on which to sample the spherical function.

sh_order : int, optional

Maximum SH order in the SH fit. For sh_order, there will be (sh_order + 1) * (sh_order_2) / 2 SH coefficients (default 4).

basis_type : {None, ‘tournier07’, ‘descoteaux07’}

None for the default DIPY basis, tournier07 for the Tournier 2007 [2] basis, and descoteaux07 for the Descoteaux 2007 [1] basis (None defaults to descoteaux07).

return_inv : bool

If True then the inverse of the matrix is also returned

smooth : float, optional

Lambda-regularization in the SH fit (default 0.0).

Returns:
B : ndarray

Matrix that transforms spherical harmonics to spherical function sf = np.dot(sh, B).

invB : ndarray

Inverse of B.

References

[1](1, 2) Descoteaux, M., Angelino, E., Fitzgibbons, S. and Deriche, R. Regularized, Fast, and Robust Analytical Q-ball Imaging. Magn. Reson. Med. 2007;58:497-510.
[2](1, 2) Tournier J.D., Calamante F. and Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35(4):1459-1472.

smooth_pinv

dipy.reconst.shm.smooth_pinv(B, L)

Regularized pseudo-inverse

Computes a regularized least square inverse of B

Parameters:
B : array_like (n, m)

Matrix to be inverted

L : array_like (n,)
Returns:
inv : ndarray (m, n)

regularized least square inverse of B

Notes

In the literature this inverse is often written \((B^{T}B+L^{2})^{-1}B^{T}\). However here this inverse is implemented using the pseudo-inverse because it is more numerically stable than the direct implementation of the matrix product.

sph_harm_ind_list

dipy.reconst.shm.sph_harm_ind_list(sh_order)

Returns the degree (n) and order (m) of all the symmetric spherical harmonics of degree less then or equal to sh_order. The results, m_list and n_list are kx1 arrays, where k depends on sh_order. They can be passed to real_sph_harm().

Parameters:
sh_order : int

even int > 0, max degree to return

Returns:
m_list : array

orders of even spherical harmonics

n_list : array

degrees of even spherical harmonics

See also

real_sph_harm

spherical_harmonics

dipy.reconst.shm.spherical_harmonics(m, n, theta, phi)

Compute spherical harmonics

This may take scalar or array arguments. The inputs will be broadcasted against each other.

Parameters:
m : int |m| <= n

The order of the harmonic.

n : int >= 0

The degree of the harmonic.

theta : float [0, 2*pi]

The azimuthal (longitudinal) coordinate.

phi : float [0, pi]

The polar (colatitudinal) coordinate.

Returns:
y_mn : complex float

The harmonic \(Y^m_n\) sampled at theta and phi.

Notes

This is a faster implementation of scipy.special.sph_harm for scipy version < 0.15.0. For scipy 0.15 and onwards, we use the scipy implementation of the function

svd

dipy.reconst.shm.svd(a, full_matrices=True, compute_uv=True)

Singular Value Decomposition.

When a is a 2D array, it is factorized as u @ np.diag(s) @ vh = (u * s) @ vh, where u and vh are 2D unitary arrays and s is a 1D array of a’s singular values. When a is higher-dimensional, SVD is applied in stacked mode as explained below.

Parameters:
a : (…, M, N) array_like

A real or complex array with a.ndim >= 2.

full_matrices : bool, optional

If True (default), u and vh have the shapes (..., M, M) and (..., N, N), respectively. Otherwise, the shapes are (..., M, K) and (..., K, N), respectively, where K = min(M, N).

compute_uv : bool, optional

Whether or not to compute u and vh in addition to s. True by default.

Returns:
u : { (…, M, M), (…, M, K) } array

Unitary array(s). The first a.ndim - 2 dimensions have the same size as those of the input a. The size of the last two dimensions depends on the value of full_matrices. Only returned when compute_uv is True.

s : (…, K) array

Vector(s) with the singular values, within each vector sorted in descending order. The first a.ndim - 2 dimensions have the same size as those of the input a.

vh : { (…, N, N), (…, K, N) } array

Unitary array(s). The first a.ndim - 2 dimensions have the same size as those of the input a. The size of the last two dimensions depends on the value of full_matrices. Only returned when compute_uv is True.

Raises:
LinAlgError

If SVD computation does not converge.

Notes

Changed in version 1.8.0: Broadcasting rules apply, see the numpy.linalg documentation for details.

The decomposition is performed using LAPACK routine _gesdd.

SVD is usually described for the factorization of a 2D matrix \(A\). The higher-dimensional case will be discussed below. In the 2D case, SVD is written as \(A = U S V^H\), where \(A = a\), \(U= u\), \(S= \mathtt{np.diag}(s)\) and \(V^H = vh\). The 1D array s contains the singular values of a and u and vh are unitary. The rows of vh are the eigenvectors of \(A^H A\) and the columns of u are the eigenvectors of \(A A^H\). In both cases the corresponding (possibly non-zero) eigenvalues are given by s**2.

If a has more than two dimensions, then broadcasting rules apply, as explained in routines.linalg-broadcasting. This means that SVD is working in “stacked” mode: it iterates over all indices of the first a.ndim - 2 dimensions and for each combination SVD is applied to the last two indices. The matrix a can be reconstructed from the decomposition with either (u * s[..., None, :]) @ vh or u @ (s[..., None] * vh). (The @ operator can be replaced by the function np.matmul for python versions below 3.5.)

If a is a matrix object (as opposed to an ndarray), then so are all the return values.

Examples

>>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)
>>> b = np.random.randn(2, 7, 8, 3) + 1j*np.random.randn(2, 7, 8, 3)

Reconstruction based on full SVD, 2D case:

>>> u, s, vh = np.linalg.svd(a, full_matrices=True)
>>> u.shape, s.shape, vh.shape
((9, 9), (6,), (6, 6))
>>> np.allclose(a, np.dot(u[:, :6] * s, vh))
True
>>> smat = np.zeros((9, 6), dtype=complex)
>>> smat[:6, :6] = np.diag(s)
>>> np.allclose(a, np.dot(u, np.dot(smat, vh)))
True

Reconstruction based on reduced SVD, 2D case:

>>> u, s, vh = np.linalg.svd(a, full_matrices=False)
>>> u.shape, s.shape, vh.shape
((9, 6), (6,), (6, 6))
>>> np.allclose(a, np.dot(u * s, vh))
True
>>> smat = np.diag(s)
>>> np.allclose(a, np.dot(u, np.dot(smat, vh)))
True

Reconstruction based on full SVD, 4D case:

>>> u, s, vh = np.linalg.svd(b, full_matrices=True)
>>> u.shape, s.shape, vh.shape
((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3))
>>> np.allclose(b, np.matmul(u[..., :3] * s[..., None, :], vh))
True
>>> np.allclose(b, np.matmul(u[..., :3], s[..., None] * vh))
True

Reconstruction based on reduced SVD, 4D case:

>>> u, s, vh = np.linalg.svd(b, full_matrices=False)
>>> u.shape, s.shape, vh.shape
((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3))
>>> np.allclose(b, np.matmul(u * s[..., None, :], vh))
True
>>> np.allclose(b, np.matmul(u, s[..., None] * vh))
True

unique

dipy.reconst.shm.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)

Find the unique elements of an array.

Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements:

  • the indices of the input array that give the unique values
  • the indices of the unique array that reconstruct the input array
  • the number of times each unique value comes up in the input array
Parameters:
ar : array_like

Input array. Unless axis is specified, this will be flattened if it is not already 1-D.

return_index : bool, optional

If True, also return the indices of ar (along the specified axis, if provided, or in the flattened array) that result in the unique array.

return_inverse : bool, optional

If True, also return the indices of the unique array (for the specified axis, if provided) that can be used to reconstruct ar.

return_counts : bool, optional

If True, also return the number of times each unique item appears in ar.

New in version 1.9.0.

axis : int or None, optional

The axis to operate on. If None, ar will be flattened. If an integer, the subarrays indexed by the given axis will be flattened and treated as the elements of a 1-D array with the dimension of the given axis, see the notes for more details. Object arrays or structured arrays that contain objects are not supported if the axis kwarg is used. The default is None.

New in version 1.13.0.

Returns:
unique : ndarray

The sorted unique values.

unique_indices : ndarray, optional

The indices of the first occurrences of the unique values in the original array. Only provided if return_index is True.

unique_inverse : ndarray, optional

The indices to reconstruct the original array from the unique array. Only provided if return_inverse is True.

unique_counts : ndarray, optional

The number of times each of the unique values comes up in the original array. Only provided if return_counts is True.

New in version 1.9.0.

See also

numpy.lib.arraysetops
Module with a number of other functions for performing set operations on arrays.

Notes

When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified axis the first dimension of the array and then flattening the subarrays in C order. The flattened subarrays are then viewed as a structured type with each element given a label, with the effect that we end up with a 1-D array of structured types that can be treated in the same way as any other 1-D array. The result is that the flattened subarrays are sorted in lexicographic order starting with the first element.

Examples

>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])

Return the unique rows of a 2D array

>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
>>> np.unique(a, axis=0)
array([[1, 0, 0], [2, 3, 4]])

Return the indices of the original array that give the unique values:

>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'],
       dtype='|S1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'],
       dtype='|S1')

Reconstruct the input array from the unique values:

>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, 3, 1, 2, 1])
>>> u[indices]
array([1, 2, 6, 4, 2, 3, 2])

Cache

class dipy.reconst.shore.Cache

Bases: object

Cache values based on a key object (such as a sphere or gradient table).

Notes

This class is meant to be used as a mix-in:

class MyModel(Model, Cache):
    pass

class MyModelFit(Fit):
    pass

Inside a method on the fit, typical usage would be:

def odf(sphere):
    M = self.model.cache_get('odf_basis_matrix', key=sphere)

    if M is None:
        M = self._compute_basis_matrix(sphere)
        self.model.cache_set('odf_basis_matrix', key=sphere, value=M)

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

cache_clear()

Clear the cache.

cache_get(tag, key, default=None)

Retrieve a value from the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

default : object

Value to be returned if no cached entry is found.

Returns:
v : object

Value from the cache associated with (tag, key). Returns default if no cached entry is found.

cache_set(tag, key, value)

Store a value in the cache.

Parameters:
tag : str

Description of the cached value.

key : object

Key object used to look up the cached value.

value : object

Value stored in the cache for each unique combination of (tag, key).

Examples

>>> def compute_expensive_matrix(parameters):
...     # Imagine the following computation is very expensive
...     return (p**2 for p in parameters)
>>> c = Cache()
>>> parameters = (1, 2, 3)
>>> X1 = compute_expensive_matrix(parameters)
>>> c.cache_set('expensive_matrix', parameters, X1)
>>> X2 = c.cache_get('expensive_matrix', parameters)
>>> X1 is X2
True

ShoreFit

class dipy.reconst.shore.ShoreFit(model, shore_coef)

Bases: object

Attributes:
shore_coeff

The SHORE coefficients

Methods

fitted_signal() The fitted signal.
msd() Calculates the analytical mean squared displacement (MSD) [1]
odf(sphere) Calculates the ODF for a given discrete sphere.
odf_sh() Calculates the real analytical ODF in terms of Spherical Harmonics.
pdf(r_points) Diffusion propagator on a given set of real points.
pdf_grid(gridsize, radius_max) Applies the analytical FFT on \(S\) to generate the diffusion propagator.
rtop_pdf() Calculates the analytical return to origin probability (RTOP) from the pdf [1].
rtop_signal() Calculates the analytical return to origin probability (RTOP) from the signal [1].
__init__(model, shore_coef)

Calculates diffusion properties for a single voxel

Parameters:
model : object,

AnalyticalModel

shore_coef : 1d ndarray,

shore coefficients

fitted_signal()

The fitted signal.

msd()

Calculates the analytical mean squared displacement (MSD) [1]

..math::
nowrap:
begin{equation}

MSD:{DSI}=int_{-infty}^{infty}int_{-infty}^{infty} int_{-infty}^{infty} P(hat{mathbf{r}}) cdot hat{mathbf{r}}^{2} dr_x dr_y dr_z

end{equation}

where \(\hat{\mathbf{r}}\) is a point in the 3D propagator space (see Wu et al. [1]).

References

[1](1, 2, 3, 4) Wu Y. et al., “Hybrid diffusion imaging”, NeuroImage, vol 36,
  1. 617-629, 2007.
odf(sphere)

Calculates the ODF for a given discrete sphere.

odf_sh()

Calculates the real analytical ODF in terms of Spherical Harmonics.

pdf(r_points)

Diffusion propagator on a given set of real points. if the array r_points is non writeable, then intermediate results are cached for faster recalculation

pdf_grid(gridsize, radius_max)

Applies the analytical FFT on \(S\) to generate the diffusion propagator. This is calculated on a discrete 3D grid in order to obtain an EAP similar to that which is obtained with DSI.

Parameters:
gridsize : unsigned int

dimension of the propagator grid

radius_max : float

maximal radius in which to compute the propagator

Returns:
eap : ndarray

the ensemble average propagator in the 3D grid

rtop_pdf()

Calculates the analytical return to origin probability (RTOP) from the pdf [1].

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

rtop_signal()

Calculates the analytical return to origin probability (RTOP) from the signal [1].

References

[1](1, 2, 3) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel

diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

shore_coeff

The SHORE coefficients

ShoreModel

class dipy.reconst.shore.ShoreModel(gtab, radial_order=6, zeta=700, lambdaN=1e-08, lambdaL=1e-08, tau=0.025330295910584444, constrain_e0=False, positive_constraint=False, pos_grid=11, pos_radius=0.02, cvxpy_solver=None)

Bases: dipy.reconst.cache.Cache

Simple Harmonic Oscillator based Reconstruction and Estimation (SHORE) [1] of the diffusion signal.

The main idea is to model the diffusion signal as a linear combination of continuous functions \(\phi_i\),

..math::
nowrap:
begin{equation}

S(mathbf{q})= sum_{i=0}^I c_{i} phi_{i}(mathbf{q}).

end{equation}

where \(\mathbf{q}\) is the wave vector which corresponds to different gradient directions. Numerous continuous functions \(\phi_i\) can be used to model \(S\). Some are presented in [2,3,4]_.

From the \(c_i\) coefficients, there exist analytical formulae to estimate the ODF, the return to the origin probability (RTOP), the mean square displacement (MSD), amongst others [5].

Notes

The implementation of SHORE depends on CVXPY (http://www.cvxpy.org/).

References

[1](1, 2, 3) Ozarslan E. et al., “Simple harmonic oscillator based reconstruction and estimation for one-dimensional q-space magnetic resonance 1D-SHORE)”, Proc Intl Soc Mag Reson Med, vol. 16, p. 35., 2008.
[2]Merlet S. et al., “Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI”, Medical Image Analysis, 2013.
[3]Rathi Y. et al., “Sparse multi-shell diffusion imaging”, MICCAI, 2011.
[4]Cheng J. et al., “Theoretical Analysis and eapactical Insights on EAP Estimation via a Unified HARDI Framework”, MICCAI workshop on Computational Diffusion MRI, 2011.
[5](1, 2) Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

Methods

cache_clear() Clear the cache.
cache_get(tag, key[, default]) Retrieve a value from the cache.
cache_set(tag, key, value) Store a value in the cache.
fit(data[, mask]) Fit method for every voxel in data
__init__(gtab, radial_order=6, zeta=700, lambdaN=1e-08, lambdaL=1e-08, tau=0.025330295910584444, constrain_e0=False, positive_constraint=False, pos_grid=11, pos_radius=0.02, cvxpy_solver=None)

Analytical and continuous modeling of the diffusion signal with respect to the SHORE basis [1,2]_. This implementation is a modification of SHORE presented in [1]. The modification was made to obtain the same ordering of the basis presented in [2,3]_.

The main idea is to model the diffusion signal as a linear combination of continuous functions \(\phi_i\),

..math::
nowrap:
begin{equation}

S(mathbf{q})= sum_{i=0}^I c_{i} phi_{i}(mathbf{q}).

end{equation}

where \(\mathbf{q}\) is the wave vector which corresponds to different gradient directions.

From the \(c_i\) coefficients, there exists an analytical formula to estimate the ODF.

Parameters:
gtab : GradientTable,

gradient directions and bvalues container class

radial_order : unsigned int,

an even integer that represent the order of the basis

zeta : unsigned int,

scale factor

lambdaN : float,

radial regularisation constant

lambdaL : float,

angular regularisation constant

tau : float,

diffusion time. By default the value that makes q equal to the square root of the b-value.

constrain_e0 : bool,

Constrain the optimization such that E(0) = 1.

positive_constraint : bool,

Constrain the propagator to be positive.

pos_grid : int,

Grid that define the points of the EAP in which we want to enforce positivity.

pos_radius : float,

Radius of the grid of the EAP in which enforce positivity in millimeters. By default 20e-03 mm.

cvxpy_solver : str, optional

cvxpy solver name. Optionally optimize the positivity constraint with a particular cvxpy solver. See http://www.cvxpy.org/ for details. Default: None (cvxpy chooses its own solver)

References

[1](1, 2) Merlet S. et al., “Continuous diffusion signal, EAP and

ODF estimation via Compressive Sensing in diffusion MRI”, Medical Image Analysis, 2013.

[2]Cheng J. et al., “Theoretical Analysis and Practical Insights

on EAP Estimation via a Unified HARDI Framework”, MICCAI workshop on Computational Diffusion MRI, 2011.

[3]Ozarslan E. et al., “Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure”, NeuroImage, 2013.

Examples

In this example, where the data, gradient table and sphere tessellation used for reconstruction are provided, we model the diffusion signal with respect to the SHORE basis and compute the real and analytical ODF.

from dipy.data import get_fnames,get_sphere sphere = get_sphere(‘symmetric724’) fimg, fbvals, fbvecs = get_fnames(‘ISBI_testing_2shells_table’) bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs) gtab = gradient_table(bvals, bvecs) from dipy.sims.voxel import SticksAndBall data, golden_directions = SticksAndBall(

gtab, d=0.0015, S0=1., angles=[(0, 0), (90, 0)], fractions=[50, 50], snr=None)

from dipy.reconst.canal import ShoreModel radial_order = 4 zeta = 700 asm = ShoreModel(gtab, radial_order=radial_order, zeta=zeta,

lambdaN=1e-8, lambdaL=1e-8)

asmfit = asm.fit(data) odf= asmfit.odf(sphere)

fit(data, mask=None)

Fit method for every voxel in data

cart2sphere

dipy.reconst.shore.cart2sphere(x, y, z)

Return angles for Cartesian 3D coordinates x, y, and z

See doc for sphere2cart for angle conventions and derivation of the formulae.

\(0\le\theta\mathrm{(theta)}\le\pi\) and \(-\pi\le\phi\mathrm{(phi)}\le\pi\)

Parameters:
x : array_like

x coordinate in Cartesian space

y : array_like

y coordinate in Cartesian space

z : array_like

z coordinate

Returns:
r : array

radius

theta : array

inclination (polar) angle

phi : array

azimuth angle

create_rspace

dipy.reconst.shore.create_rspace(gridsize, radius_max)
Create the real space table, that contains the points in which
to compute the pdf.
Parameters:
gridsize : unsigned int

dimension of the propagator grid

radius_max : float

maximal radius in which compute the propagator

Returns:
vecs : array, shape (N,3)

positions of the pdf points in a 3D matrix

tab : array, shape (N,3)

real space points in which calculates the pdf

factorial

dipy.reconst.shore.factorial(x) → Integral

Find x!. Raise a ValueError if x is negative or non-integral.

genlaguerre

dipy.reconst.shore.genlaguerre(n, alpha, monic=False)

Generalized (associated) Laguerre polynomial.

Defined to be the solution of

\[x\frac{d^2}{dx^2}L_n^{(\alpha)} + (\alpha + 1 - x)\frac{d}{dx}L_n^{(\alpha)} + nL_n^{(\alpha)} = 0,\]

where \(\alpha > -1\); \(L_n^{(\alpha)}\) is a polynomial of degree \(n\).

Parameters:
n : int

Degree of the polynomial.

alpha : float

Parameter, must be greater than -1.

monic : bool, optional

If True, scale the leading coefficient to be 1. Default is False.

Returns:
L : orthopoly1d

Generalized Laguerre polynomial.

See also

laguerre
Laguerre polynomial.

Notes

For fixed \(\alpha\), the polynomials \(L_n^{(\alpha)}\) are orthogonal over \([0, \infty)\) with weight function \(e^{-x}x^\alpha\).

The Laguerre polynomials are the special case where \(\alpha = 0\).

l_shore

dipy.reconst.shore.l_shore(radial_order)

Returns the angular regularisation matrix for SHORE basis

multi_voxel_fit

dipy.reconst.shore.multi_voxel_fit(single_voxel_fit)

Method decorator to turn a single voxel model fit definition into a multi voxel model fit definition

n_shore

dipy.reconst.shore.n_shore(radial_order)

Returns the angular regularisation matrix for SHORE basis

optional_package

dipy.reconst.shore.optional_package(name, trip_msg=None)

Return package-like thing and module setup for package name

Parameters:
name : str

package name

trip_msg : None or str

message to give when someone tries to use the return package, but we could not import it, and have returned a TripWire object instead. Default message if None.

Returns:
pkg_like : module or TripWire instance

If we can import the package, return it. Otherwise return an object raising an error when accessed

have_pkg : bool

True if import for package was successful, false otherwise

module_setup : function

callable usually set as setup_module in calling namespace, to allow skipping tests.

real_sph_harm

dipy.reconst.shore.real_sph_harm(m, n, theta, phi)

Compute real spherical harmonics.

Where the real harmonic \(Y^m_n\) is defined to be:

Imag(\(Y^m_n\)) * sqrt(2) if m > 0 \(Y^0_n\) if m = 0 Real(\(Y^|m|_n\)) * sqrt(2) if m < 0

This may take scalar or array arguments. The inputs will be broadcasted against each other.

Parameters:
m : int |m| <= n

The order of the harmonic.

n : int >= 0

The degree of the harmonic.

theta : float [0, 2*pi]

The azimuthal (longitudinal) coordinate.

phi : float [0, pi]

The polar (colatitudinal) coordinate.

Returns:
y_mn : real float

The real harmonic \(Y^m_n\) sampled at theta and phi.

See also

scipy.special.sph_harm

shore_indices

dipy.reconst.shore.shore_indices(radial_order, index)

Given the basis order and the index, return the shore indices n, l, m for modified Merlet’s 3D-SHORE ..math:

:nowrap:
    \begin{equation}
        \textbf{E}(q\textbf{u})=\sum_{l=0, even}^{N_{max}}
                                \sum_{n=l}^{(N_{max}+l)/2}
                                \sum_{m=-l}^l c_{nlm}
                                \phi_{nlm}(q\textbf{u})
    \end{equation}

where \(\phi_{nlm}\) is ..math:

:nowrap:
    \begin{equation}
        \phi_{nlm}^{SHORE}(q\textbf{u})=\Biggl[\dfrac{2(n-l)!}
            {\zeta^{3/2} \Gamma(n+3/2)} \Biggr]^{1/2}
            \Biggl(\dfrac{q^2}{\zeta}\Biggr)^{l/2}
            exp\Biggl(\dfrac{-q^2}{2\zeta}\Biggr)
            L^{l+1/2}_{n-l} \Biggl(\dfrac{q^2}{\zeta}\Biggr)
            Y_l^m(\textbf{u}).
    \end{equation}
Parameters:
radial_order : unsigned int

an even integer that represent the maximal order of the basis

index : unsigned int

index of the coefficients, start from 0

Returns:
n : unsigned int

the index n of the modified shore basis

l : unsigned int

the index l of the modified shore basis

m : unsigned int

the index m of the modified shore basis

shore_matrix

dipy.reconst.shore.shore_matrix(radial_order, zeta, gtab, tau=0.025330295910584444)

Compute the SHORE matrix for modified Merlet’s 3D-SHORE [1]

..math::
nowrap:
begin{equation}
textbf{E}(qtextbf{u})=sum_{l=0, even}^{N_{max}}

sum_{n=l}^{(N_{max}+l)/2} sum_{m=-l}^l c_{nlm} phi_{nlm}(qtextbf{u})

end{equation}

where \(\phi_{nlm}\) is ..math:

:nowrap:
    \begin{equation}
        \phi_{nlm}^{SHORE}(q\textbf{u})=\Biggl[\dfrac{2(n-l)!}
            {\zeta^{3/2} \Gamma(n+3/2)} \Biggr]^{1/2}
            \Biggl(\dfrac{q^2}{\zeta}\Biggr)^{l/2}
            exp\Biggl(\dfrac{-q^2}{2\zeta}\Biggr)
            L^{l+1/2}_{n-l} \Biggl(\dfrac{q^2}{\zeta}\Biggr)
            Y_l^m(\textbf{u}).
    \end{equation}
Parameters:
radial_order : unsigned int,

an even integer that represent the order of the basis

zeta : unsigned int,

scale factor

gtab : GradientTable,

gradient directions and bvalues container class

tau : float,

diffusion time. By default the value that makes q=sqrt(b).

References

[1](1, 2, 3) Merlet S. et al., “Continuous diffusion signal, EAP and

ODF estimation via Compressive Sensing in diffusion MRI”, Medical Image Analysis, 2013.

shore_matrix_odf

dipy.reconst.shore.shore_matrix_odf(radial_order, zeta, sphere_vertices)

Compute the SHORE ODF matrix [1]

Parameters:
radial_order : unsigned int,

an even integer that represent the order of the basis

zeta : unsigned int,

scale factor

sphere_vertices : array, shape (N,3)

vertices of the odf sphere

References

[1](1, 2, 3) Merlet S. et al., “Continuous diffusion signal, EAP and

ODF estimation via Compressive Sensing in diffusion MRI”, Medical Image Analysis, 2013.

shore_matrix_pdf

dipy.reconst.shore.shore_matrix_pdf(radial_order, zeta, rtab)

Compute the SHORE propagator matrix [1]

Parameters:
radial_order : unsigned int,

an even integer that represent the order of the basis

zeta : unsigned int,

scale factor

rtab : array, shape (N,3)

real space points in which calculates the pdf

References

[1](1, 2, 3) Merlet S. et al., “Continuous diffusion signal, EAP and

ODF estimation via Compressive Sensing in diffusion MRI”, Medical Image Analysis, 2013.

shore_order

dipy.reconst.shore.shore_order(n, l, m)

Given the indices (n,l,m) of the basis, return the minimum order for those indices and their index for modified Merlet’s 3D-SHORE.

Parameters:
n : unsigned int

the index n of the modified shore basis

l : unsigned int

the index l of the modified shore basis

m : unsigned int

the index m of the modified shore basis

Returns:
radial_order : unsigned int

an even integer that represent the maximal order of the basis

index : unsigned int

index of the coefficient correspondig to (n,l,m), start from 0

warn

dipy.reconst.shore.warn()

Issue a warning, or maybe ignore it or raise an exception.

dki_design_matrix

dipy.reconst.utils.dki_design_matrix(gtab)

Constructs B design matrix for DKI

gtab : GradientTable
Measurement directions.
Returns:
B : array (N, 22)

Design matrix or B matrix for the DKI model B[j, :] = (Bxx, Bxy, Bzz, Bxz, Byz, Bzz,

Bxxxx, Byyyy, Bzzzz, Bxxxy, Bxxxz, Bxyyy, Byyyz, Bxzzz, Byzzz, Bxxyy, Bxxzz, Byyzz, Bxxyz, Bxyyz, Bxyzz, BlogS0)