sims
sims.phantom
sims.voxel
sims
sims.phantom
SingleTensor (gtab[, S0, evals, evecs, snr]) |
Simulated Q-space signal with a single tensor. |
add_noise (vol[, snr, S0, noise_type]) |
Add noise of specified distribution to a 4D array. |
diff2eigenvectors (dx, dy, dz) |
numerical derivatives 2 eigenvectors |
get_fnames ([name]) |
provides filenames of some test datasets or other useful parametrisations |
gradient_table (bvals[, bvecs, big_delta, …]) |
A general function for creating diffusion MR gradients. |
orbital_phantom ([gtab, evals, func, t, …]) |
Create a phantom based on a 3-D orbit f(t) -> (x,y,z) . |
vec2vec_rotmat (u, v) |
rotation matrix from 2 unit vectors |
sims.voxel
MultiTensor (gtab, mevals[, S0, angles, …]) |
Simulate a Multi-Tensor signal. |
SingleTensor (gtab[, S0, evals, evecs, snr]) |
Simulated Q-space signal with a single tensor. |
SticksAndBall (gtab[, d, S0, angles, …]) |
Simulate the signal for a Sticks & Ball model. |
add_noise (signal, snr, S0[, noise_type]) |
Add noise of specified distribution to the signal from a single voxel. |
all_tensor_evecs (e0) |
Given the principle tensor axis, return the array of all eigenvectors column-wise (or, the rotation matrix that orientates the tensor). |
callaghan_perpendicular (q, radius) |
Calculates the perpendicular diffusion signal E(q) in a cylinder of radius R using the Soderman model [1]. |
cylinders_and_ball_soderman (gtab, tau[, …]) |
Calculates the three-dimensional signal attenuation E(q) originating from within a cylinder of radius R using the Soderman approximation [1]. |
dki_design_matrix (gtab) |
Constructs B design matrix for DKI |
dki_signal (gtab, dt, kt[, S0, snr]) |
Simulated signal based on the diffusion and diffusion kurtosis tensors of a single voxel. |
dot (a, b[, out]) |
Dot product of two arrays. |
gaussian_parallel (q, tau[, D]) |
Calculates the parallel Gaussian diffusion signal. |
kurtosis_element (D_comps, frac, ind_i, …) |
Computes the diffusion kurtosis tensor element (with indexes i, j, k and l) based on the individual diffusion tensor components of a multicompartmental model. |
multi_tensor (gtab, mevals[, S0, angles, …]) |
Simulate a Multi-Tensor signal. |
multi_tensor_dki (gtab, mevals[, S0, angles, …]) |
Simulate the diffusion-weight signal, diffusion and kurtosis tensors based on the DKI model |
multi_tensor_msd (mf[, mevals, tau]) |
Simulate a Multi-Tensor rtop. |
multi_tensor_odf (odf_verts, mevals, angles, …) |
Simulate a Multi-Tensor ODF. |
multi_tensor_pdf (pdf_points, mevals, angles, …) |
Simulate a Multi-Tensor ODF. |
multi_tensor_rtop (mf[, mevals, tau]) |
Simulate a Multi-Tensor rtop. |
single_tensor (gtab[, S0, evals, evecs, snr]) |
Simulated Q-space signal with a single tensor. |
single_tensor_msd ([evals, tau]) |
Simulate a Multi-Tensor rtop. |
single_tensor_odf (r[, evals, evecs]) |
Simulated ODF with a single tensor. |
single_tensor_pdf (r[, evals, evecs, tau]) |
Simulated ODF with a single tensor. |
single_tensor_rtop ([evals, tau]) |
Simulate a Single-Tensor rtop. |
sphere2cart (r, theta, phi) |
Spherical to Cartesian coordinates |
sticks_and_ball (gtab[, d, S0, angles, …]) |
Simulate the signal for a Sticks & Ball model. |
vec2vec_rotmat (u, v) |
rotation matrix from 2 unit vectors |
dipy.sims.phantom.
SingleTensor
(gtab, S0=1, evals=None, evecs=None, snr=None)Simulated Q-space signal with a single tensor.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | M. Descoteaux, “High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation and Tractography”, PhD thesis, University of Nice-Sophia Antipolis, p. 42, 2008. |
[2] | E. Stejskal and J. Tanner, “Spin diffusion measurements: spin echos in the presence of a time-dependent field gradient”, Journal of Chemical Physics, nr. 42, pp. 288–292, 1965. |
dipy.sims.phantom.
add_noise
(vol, snr=1.0, S0=None, noise_type='rician')Add noise of specified distribution to a 4D array.
Parameters: |
|
---|---|
Returns: |
|
Notes
SNR is defined here, following [1], as S0 / sigma
, where sigma
is
the standard deviation of the two Gaussian distributions forming the real
and imaginary components of the Rician noise distribution (see [2]).
References
[1] | (1, 2) Descoteaux, Angelino, Fitzgibbons and Deriche (2007) Regularized, fast and robust q-ball imaging. MRM, 58: 497-510 |
[2] | (1, 2) Gudbjartson and Patz (2008). The Rician distribution of noisy MRI data. MRM 34: 910-914. |
Examples
>>> signal = np.arange(800).reshape(2, 2, 2, 100)
>>> signal_w_noise = add_noise(signal, snr=10, noise_type='rician')
dipy.sims.phantom.
get_fnames
(name='small_64D')provides filenames of some test datasets or other useful parametrisations
Parameters: |
|
---|---|
Returns: |
|
Examples
>>> import numpy as np
>>> from dipy.data import get_fnames
>>> fimg,fbvals,fbvecs=get_fnames('small_101D')
>>> bvals=np.loadtxt(fbvals)
>>> bvecs=np.loadtxt(fbvecs).T
>>> import nibabel as nib
>>> img=nib.load(fimg)
>>> data=img.get_data()
>>> data.shape == (6, 10, 10, 102)
True
>>> bvals.shape == (102,)
True
>>> bvecs.shape == (102, 3)
True
dipy.sims.phantom.
gradient_table
(bvals, bvecs=None, big_delta=None, small_delta=None, b0_threshold=50, atol=0.01)A general function for creating diffusion MR gradients.
It reads, loads and prepares scanner parameters like the b-values and b-vectors so that they can be useful during the reconstruction process.
Parameters: |
|
---|---|
Returns: |
|
Notes
Examples
>>> from dipy.core.gradients import gradient_table
>>> bvals = 1500 * np.ones(7)
>>> bvals[0] = 0
>>> sq2 = np.sqrt(2) / 2
>>> bvecs = np.array([[0, 0, 0],
... [1, 0, 0],
... [0, 1, 0],
... [0, 0, 1],
... [sq2, sq2, 0],
... [sq2, 0, sq2],
... [0, sq2, sq2]])
>>> gt = gradient_table(bvals, bvecs)
>>> gt.bvecs.shape == bvecs.shape
True
>>> gt = gradient_table(bvals, bvecs.T)
>>> gt.bvecs.shape == bvecs.T.shape
False
dipy.sims.phantom.
orbital_phantom
(gtab=None, evals=array([0.0015, 0.0004, 0.0004]), func=None, t=array([0., 0.00628947, 0.01257895, 0.01886842, 0.0251579, 0.03144737, 0.03773685, 0.04402632, 0.0503158, 0.05660527, 0.06289475, 0.06918422, 0.0754737, 0.08176317, 0.08805265, 0.09434212, 0.1006316, 0.10692107, 0.11321055, 0.11950002, 0.1257895, 0.13207897, 0.13836845, 0.14465792, 0.15094739, 0.15723687, 0.16352634, 0.16981582, 0.17610529, 0.18239477, 0.18868424, 0.19497372, 0.20126319, 0.20755267, 0.21384214, 0.22013162, 0.22642109, 0.23271057, 0.23900004, 0.24528952, 0.25157899, 0.25786847, 0.26415794, 0.27044742, 0.27673689, 0.28302637, 0.28931584, 0.29560531, 0.30189479, 0.30818426, 0.31447374, 0.32076321, 0.32705269, 0.33334216, 0.33963164, 0.34592111, 0.35221059, 0.35850006, 0.36478954, 0.37107901, 0.37736849, 0.38365796, 0.38994744, 0.39623691, 0.40252639, 0.40881586, 0.41510534, 0.42139481, 0.42768429, 0.43397376, 0.44026323, 0.44655271, 0.45284218, 0.45913166, 0.46542113, 0.47171061, 0.47800008, 0.48428956, 0.49057903, 0.49686851, 0.50315798, 0.50944746, 0.51573693, 0.52202641, 0.52831588, 0.53460536, 0.54089483, 0.54718431, 0.55347378, 0.55976326, 0.56605273, 0.57234221, 0.57863168, 0.58492115, 0.59121063, 0.5975001, 0.60378958, 0.61007905, 0.61636853, 0.622658, 0.62894748, 0.63523695, 0.64152643, 0.6478159, 0.65410538, 0.66039485, 0.66668433, 0.6729738, 0.67926328, 0.68555275, 0.69184223, 0.6981317, 0.70442118, 0.71071065, 0.71700013, 0.7232896, 0.72957907, 0.73586855, 0.74215802, 0.7484475, 0.75473697, 0.76102645, 0.76731592, 0.7736054, 0.77989487, 0.78618435, 0.79247382, 0.7987633, 0.80505277, 0.81134225, 0.81763172, 0.8239212, 0.83021067, 0.83650015, 0.84278962, 0.8490791, 0.85536857, 0.86165805, 0.86794752, 0.87423699, 0.88052647, 0.88681594, 0.89310542, 0.89939489, 0.90568437, 0.91197384, 0.91826332, 0.92455279, 0.93084227, 0.93713174, 0.94342122, 0.94971069, 0.95600017, 0.96228964, 0.96857912, 0.97486859, 0.98115807, 0.98744754, 0.99373702, 1.00002649, 1.00631597, 1.01260544, 1.01889491, 1.02518439, 1.03147386, 1.03776334, 1.04405281, 1.05034229, 1.05663176, 1.06292124, 1.06921071, 1.07550019, 1.08178966, 1.08807914, 1.09436861, 1.10065809, 1.10694756, 1.11323704, 1.11952651, 1.12581599, 1.13210546, 1.13839494, 1.14468441, 1.15097389, 1.15726336, 1.16355283, 1.16984231, 1.17613178, 1.18242126, 1.18871073, 1.19500021, 1.20128968, 1.20757916, 1.21386863, 1.22015811, 1.22644758, 1.23273706, 1.23902653, 1.24531601, 1.25160548, 1.25789496, 1.26418443, 1.27047391, 1.27676338, 1.28305286, 1.28934233, 1.29563181, 1.30192128, 1.30821075, 1.31450023, 1.3207897, 1.32707918, 1.33336865, 1.33965813, 1.3459476, 1.35223708, 1.35852655, 1.36481603, 1.3711055, 1.37739498, 1.38368445, 1.38997393, 1.3962634, 1.40255288, 1.40884235, 1.41513183, 1.4214213, 1.42771078, 1.43400025, 1.44028973, 1.4465792, 1.45286867, 1.45915815, 1.46544762, 1.4717371, 1.47802657, 1.48431605, 1.49060552, 1.496895, 1.50318447, 1.50947395, 1.51576342, 1.5220529, 1.52834237, 1.53463185, 1.54092132, 1.5472108, 1.55350027, 1.55978975, 1.56607922, 1.5723687, 1.57865817, 1.58494765, 1.59123712, 1.59752659, 1.60381607, 1.61010554, 1.61639502, 1.62268449, 1.62897397, 1.63526344, 1.64155292, 1.64784239, 1.65413187, 1.66042134, 1.66671082, 1.67300029, 1.67928977, 1.68557924, 1.69186872, 1.69815819, 1.70444767, 1.71073714, 1.71702662, 1.72331609, 1.72960557, 1.73589504, 1.74218451, 1.74847399, 1.75476346, 1.76105294, 1.76734241, 1.77363189, 1.77992136, 1.78621084, 1.79250031, 1.79878979, 1.80507926, 1.81136874, 1.81765821, 1.82394769, 1.83023716, 1.83652664, 1.84281611, 1.84910559, 1.85539506, 1.86168454, 1.86797401, 1.87426349, 1.88055296, 1.88684243, 1.89313191, 1.89942138, 1.90571086, 1.91200033, 1.91828981, 1.92457928, 1.93086876, 1.93715823, 1.94344771, 1.94973718, 1.95602666, 1.96231613, 1.96860561, 1.97489508, 1.98118456, 1.98747403, 1.99376351, 2.00005298, 2.00634246, 2.01263193, 2.01892141, 2.02521088, 2.03150035, 2.03778983, 2.0440793, 2.05036878, 2.05665825, 2.06294773, 2.0692372, 2.07552668, 2.08181615, 2.08810563, 2.0943951, 2.10068458, 2.10697405, 2.11326353, 2.119553, 2.12584248, 2.13213195, 2.13842143, 2.1447109, 2.15100038, 2.15728985, 2.16357932, 2.1698688, 2.17615827, 2.18244775, 2.18873722, 2.1950267, 2.20131617, 2.20760565, 2.21389512, 2.2201846, 2.22647407, 2.23276355, 2.23905302, 2.2453425, 2.25163197, 2.25792145, 2.26421092, 2.2705004, 2.27678987, 2.28307935, 2.28936882, 2.2956583, 2.30194777, 2.30823724, 2.31452672, 2.32081619, 2.32710567, 2.33339514, 2.33968462, 2.34597409, 2.35226357, 2.35855304, 2.36484252, 2.37113199, 2.37742147, 2.38371094, 2.39000042, 2.39628989, 2.40257937, 2.40886884, 2.41515832, 2.42144779, 2.42773727, 2.43402674, 2.44031622, 2.44660569, 2.45289516, 2.45918464, 2.46547411, 2.47176359, 2.47805306, 2.48434254, 2.49063201, 2.49692149, 2.50321096, 2.50950044, 2.51578991, 2.52207939, 2.52836886, 2.53465834, 2.54094781, 2.54723729, 2.55352676, 2.55981624, 2.56610571, 2.57239519, 2.57868466, 2.58497414, 2.59126361, 2.59755308, 2.60384256, 2.61013203, 2.61642151, 2.62271098, 2.62900046, 2.63528993, 2.64157941, 2.64786888, 2.65415836, 2.66044783, 2.66673731, 2.67302678, 2.67931626, 2.68560573, 2.69189521, 2.69818468, 2.70447416, 2.71076363, 2.71705311, 2.72334258, 2.72963206, 2.73592153, 2.742211, 2.74850048, 2.75478995, 2.76107943, 2.7673689, 2.77365838, 2.77994785, 2.78623733, 2.7925268, 2.79881628, 2.80510575, 2.81139523, 2.8176847, 2.82397418, 2.83026365, 2.83655313, 2.8428426, 2.84913208, 2.85542155, 2.86171103, 2.8680005, 2.87428998, 2.88057945, 2.88686892, 2.8931584, 2.89944787, 2.90573735, 2.91202682, 2.9183163, 2.92460577, 2.93089525, 2.93718472, 2.9434742, 2.94976367, 2.95605315, 2.96234262, 2.9686321, 2.97492157, 2.98121105, 2.98750052, 2.99379, 3.00007947, 3.00636895, 3.01265842, 3.0189479, 3.02523737, 3.03152684, 3.03781632, 3.04410579, 3.05039527, 3.05668474, 3.06297422, 3.06926369, 3.07555317, 3.08184264, 3.08813212, 3.09442159, 3.10071107, 3.10700054, 3.11329002, 3.11957949, 3.12586897, 3.13215844, 3.13844792, 3.14473739, 3.15102687, 3.15731634, 3.16360582, 3.16989529, 3.17618476, 3.18247424, 3.18876371, 3.19505319, 3.20134266, 3.20763214, 3.21392161, 3.22021109, 3.22650056, 3.23279004, 3.23907951, 3.24536899, 3.25165846, 3.25794794, 3.26423741, 3.27052689, 3.27681636, 3.28310584, 3.28939531, 3.29568479, 3.30197426, 3.30826374, 3.31455321, 3.32084268, 3.32713216, 3.33342163, 3.33971111, 3.34600058, 3.35229006, 3.35857953, 3.36486901, 3.37115848, 3.37744796, 3.38373743, 3.39002691, 3.39631638, 3.40260586, 3.40889533, 3.41518481, 3.42147428, 3.42776376, 3.43405323, 3.44034271, 3.44663218, 3.45292166, 3.45921113, 3.4655006, 3.47179008, 3.47807955, 3.48436903, 3.4906585, 3.49694798, 3.50323745, 3.50952693, 3.5158164, 3.52210588, 3.52839535, 3.53468483, 3.5409743, 3.54726378, 3.55355325, 3.55984273, 3.5661322, 3.57242168, 3.57871115, 3.58500063, 3.5912901, 3.59757958, 3.60386905, 3.61015852, 3.616448, 3.62273747, 3.62902695, 3.63531642, 3.6416059, 3.64789537, 3.65418485, 3.66047432, 3.6667638, 3.67305327, 3.67934275, 3.68563222, 3.6919217, 3.69821117, 3.70450065, 3.71079012, 3.7170796, 3.72336907, 3.72965855, 3.73594802, 3.7422375, 3.74852697, 3.75481644, 3.76110592, 3.76739539, 3.77368487, 3.77997434, 3.78626382, 3.79255329, 3.79884277, 3.80513224, 3.81142172, 3.81771119, 3.82400067, 3.83029014, 3.83657962, 3.84286909, 3.84915857, 3.85544804, 3.86173752, 3.86802699, 3.87431647, 3.88060594, 3.88689542, 3.89318489, 3.89947436, 3.90576384, 3.91205331, 3.91834279, 3.92463226, 3.93092174, 3.93721121, 3.94350069, 3.94979016, 3.95607964, 3.96236911, 3.96865859, 3.97494806, 3.98123754, 3.98752701, 3.99381649, 4.00010596, 4.00639544, 4.01268491, 4.01897439, 4.02526386, 4.03155334, 4.03784281, 4.04413228, 4.05042176, 4.05671123, 4.06300071, 4.06929018, 4.07557966, 4.08186913, 4.08815861, 4.09444808, 4.10073756, 4.10702703, 4.11331651, 4.11960598, 4.12589546, 4.13218493, 4.13847441, 4.14476388, 4.15105336, 4.15734283, 4.16363231, 4.16992178, 4.17621126, 4.18250073, 4.1887902, 4.19507968, 4.20136915, 4.20765863, 4.2139481, 4.22023758, 4.22652705, 4.23281653, 4.239106, 4.24539548, 4.25168495, 4.25797443, 4.2642639, 4.27055338, 4.27684285, 4.28313233, 4.2894218, 4.29571128, 4.30200075, 4.30829023, 4.3145797, 4.32086918, 4.32715865, 4.33344812, 4.3397376, 4.34602707, 4.35231655, 4.35860602, 4.3648955, 4.37118497, 4.37747445, 4.38376392, 4.3900534, 4.39634287, 4.40263235, 4.40892182, 4.4152113, 4.42150077, 4.42779025, 4.43407972, 4.4403692, 4.44665867, 4.45294815, 4.45923762, 4.4655271, 4.47181657, 4.47810604, 4.48439552, 4.49068499, 4.49697447, 4.50326394, 4.50955342, 4.51584289, 4.52213237, 4.52842184, 4.53471132, 4.54100079, 4.54729027, 4.55357974, 4.55986922, 4.56615869, 4.57244817, 4.57873764, 4.58502712, 4.59131659, 4.59760607, 4.60389554, 4.61018502, 4.61647449, 4.62276396, 4.62905344, 4.63534291, 4.64163239, 4.64792186, 4.65421134, 4.66050081, 4.66679029, 4.67307976, 4.67936924, 4.68565871, 4.69194819, 4.69823766, 4.70452714, 4.71081661, 4.71710609, 4.72339556, 4.72968504, 4.73597451, 4.74226399, 4.74855346, 4.75484294, 4.76113241, 4.76742188, 4.77371136, 4.78000083, 4.78629031, 4.79257978, 4.79886926, 4.80515873, 4.81144821, 4.81773768, 4.82402716, 4.83031663, 4.83660611, 4.84289558, 4.84918506, 4.85547453, 4.86176401, 4.86805348, 4.87434296, 4.88063243, 4.88692191, 4.89321138, 4.89950086, 4.90579033, 4.9120798, 4.91836928, 4.92465875, 4.93094823, 4.9372377, 4.94352718, 4.94981665, 4.95610613, 4.9623956, 4.96868508, 4.97497455, 4.98126403, 4.9875535, 4.99384298, 5.00013245, 5.00642193, 5.0127114, 5.01900088, 5.02529035, 5.03157983, 5.0378693, 5.04415878, 5.05044825, 5.05673772, 5.0630272, 5.06931667, 5.07560615, 5.08189562, 5.0881851, 5.09447457, 5.10076405, 5.10705352, 5.113343, 5.11963247, 5.12592195, 5.13221142, 5.1385009, 5.14479037, 5.15107985, 5.15736932, 5.1636588, 5.16994827, 5.17623775, 5.18252722, 5.1888167, 5.19510617, 5.20139564, 5.20768512, 5.21397459, 5.22026407, 5.22655354, 5.23284302, 5.23913249, 5.24542197, 5.25171144, 5.25800092, 5.26429039, 5.27057987, 5.27686934, 5.28315882, 5.28944829, 5.29573777, 5.30202724, 5.30831672, 5.31460619, 5.32089567, 5.32718514, 5.33347462, 5.33976409, 5.34605356, 5.35234304, 5.35863251, 5.36492199, 5.37121146, 5.37750094, 5.38379041, 5.39007989, 5.39636936, 5.40265884, 5.40894831, 5.41523779, 5.42152726, 5.42781674, 5.43410621, 5.44039569, 5.44668516, 5.45297464, 5.45926411, 5.46555359, 5.47184306, 5.47813254, 5.48442201, 5.49071148, 5.49700096, 5.50329043, 5.50957991, 5.51586938, 5.52215886, 5.52844833, 5.53473781, 5.54102728, 5.54731676, 5.55360623, 5.55989571, 5.56618518, 5.57247466, 5.57876413, 5.58505361, 5.59134308, 5.59763256, 5.60392203, 5.61021151, 5.61650098, 5.62279046, 5.62907993, 5.6353694, 5.64165888, 5.64794835, 5.65423783, 5.6605273, 5.66681678, 5.67310625, 5.67939573, 5.6856852, 5.69197468, 5.69826415, 5.70455363, 5.7108431, 5.71713258, 5.72342205, 5.72971153, 5.736001, 5.74229048, 5.74857995, 5.75486943, 5.7611589, 5.76744838, 5.77373785, 5.78002732, 5.7863168, 5.79260627, 5.79889575, 5.80518522, 5.8114747, 5.81776417, 5.82405365, 5.83034312, 5.8366326, 5.84292207, 5.84921155, 5.85550102, 5.8617905, 5.86807997, 5.87436945, 5.88065892, 5.8869484, 5.89323787, 5.89952735, 5.90581682, 5.9121063, 5.91839577, 5.92468524, 5.93097472, 5.93726419, 5.94355367, 5.94984314, 5.95613262, 5.96242209, 5.96871157, 5.97500104, 5.98129052, 5.98757999, 5.99386947, 6.00015894, 6.00644842, 6.01273789, 6.01902737, 6.02531684, 6.03160632, 6.03789579, 6.04418527, 6.05047474, 6.05676422, 6.06305369, 6.06934316, 6.07563264, 6.08192211, 6.08821159, 6.09450106, 6.10079054, 6.10708001, 6.11336949, 6.11965896, 6.12594844, 6.13223791, 6.13852739, 6.14481686, 6.15110634, 6.15739581, 6.16368529, 6.16997476, 6.17626424, 6.18255371, 6.18884319, 6.19513266, 6.20142214, 6.20771161, 6.21400108, 6.22029056, 6.22658003, 6.23286951, 6.23915898, 6.24544846, 6.25173793, 6.25802741, 6.26431688, 6.27060636, 6.27689583, 6.28318531]), datashape=(64, 64, 64, 65), origin=(32, 32, 32), scale=(25, 25, 25), angles=array([0., 0.2026834, 0.40536679, 0.60805019, 0.81073359, 1.01341699, 1.21610038, 1.41878378, 1.62146718, 1.82415057, 2.02683397, 2.22951737, 2.43220076, 2.63488416, 2.83756756, 3.04025096, 3.24293435, 3.44561775, 3.64830115, 3.85098454, 4.05366794, 4.25635134, 4.45903473, 4.66171813, 4.86440153, 5.06708493, 5.26976832, 5.47245172, 5.67513512, 5.87781851, 6.08050191, 6.28318531]), radii=array([0.2, 0.56, 0.92, 1.28, 1.64, 2. ]), S0=100.0, snr=None)Create a phantom based on a 3-D orbit f(t) -> (x,y,z)
.
Parameters: |
|
---|---|
Returns: |
|
See also
Examples
>>> def f(t):
... x = np.sin(t)
... y = np.cos(t)
... z = np.linspace(-1, 1, len(x))
... return x, y, z
>>> data = orbital_phantom(func=f)
dipy.sims.phantom.
vec2vec_rotmat
(u, v)rotation matrix from 2 unit vectors
u, v being unit 3d vectors return a 3x3 rotation matrix R than aligns u to v.
In general there are many rotations that will map u to v. If S is any rotation using v as an axis then R.S will also map u to v since (S.R)u = S(Ru) = Sv = v. The rotation R returned by vec2vec_rotmat leaves fixed the perpendicular to the plane spanned by u and v.
The transpose of R will align v to u.
Parameters: |
|
---|---|
Returns: |
|
Examples
>>> import numpy as np
>>> from dipy.core.geometry import vec2vec_rotmat
>>> u=np.array([1,0,0])
>>> v=np.array([0,1,0])
>>> R=vec2vec_rotmat(u,v)
>>> np.dot(R,u)
array([ 0., 1., 0.])
>>> np.dot(R.T,v)
array([ 1., 0., 0.])
dipy.sims.voxel.
MultiTensor
(gtab, mevals, S0=1.0, angles=[(0, 0), (90, 0)], fractions=[50, 50], snr=20)Simulate a Multi-Tensor signal.
Parameters: |
|
---|---|
Returns: |
|
Examples
>>> import numpy as np
>>> from dipy.sims.voxel import multi_tensor
>>> from dipy.data import get_fnames
>>> from dipy.core.gradients import gradient_table
>>> from dipy.io.gradients import read_bvals_bvecs
>>> fimg, fbvals, fbvecs = get_fnames('small_101D')
>>> bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
>>> gtab = gradient_table(bvals, bvecs)
>>> mevals=np.array(([0.0015, 0.0003, 0.0003],[0.0015, 0.0003, 0.0003]))
>>> e0 = np.array([1, 0, 0.])
>>> e1 = np.array([0., 1, 0])
>>> S = multi_tensor(gtab, mevals)
dipy.sims.voxel.
SingleTensor
(gtab, S0=1, evals=None, evecs=None, snr=None)Simulated Q-space signal with a single tensor.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | M. Descoteaux, “High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation and Tractography”, PhD thesis, University of Nice-Sophia Antipolis, p. 42, 2008. |
[2] | E. Stejskal and J. Tanner, “Spin diffusion measurements: spin echos in the presence of a time-dependent field gradient”, Journal of Chemical Physics, nr. 42, pp. 288–292, 1965. |
dipy.sims.voxel.
SticksAndBall
(gtab, d=0.0015, S0=1.0, angles=[(0, 0), (90, 0)], fractions=[35, 35], snr=20)Simulate the signal for a Sticks & Ball model.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | Behrens et al., “Probabilistic diffusion tractography with multiple fiber orientations: what can we gain?”, Neuroimage, 2007. |
dipy.sims.voxel.
add_noise
(signal, snr, S0, noise_type='rician')Add noise of specified distribution to the signal from a single voxel.
Parameters: |
|
---|---|
Returns: |
|
Notes
SNR is defined here, following [1], as S0 / sigma
, where sigma
is
the standard deviation of the two Gaussian distributions forming the real
and imaginary components of the Rician noise distribution (see [2]).
References
[1] | (1, 2) Descoteaux, Angelino, Fitzgibbons and Deriche (2007) Regularized, fast and robust q-ball imaging. MRM, 58: 497-510 |
[2] | (1, 2) Gudbjartson and Patz (2008). The Rician distribution of noisy MRI data. MRM 34: 910-914. |
Examples
>>> signal = np.arange(800).reshape(2, 2, 2, 100)
>>> signal_w_noise = add_noise(signal, 10., 100., noise_type='rician')
dipy.sims.voxel.
callaghan_perpendicular
(q, radius)Calculates the perpendicular diffusion signal E(q) in a cylinder of radius R using the Soderman model [1]. Assumes that the pulse length is infinitely short and the diffusion time is infinitely long.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | (1, 2, 3) Söderman, Olle, and Bengt Jönsson. “Restricted diffusion in cylindrical geometry.” Journal of Magnetic Resonance, Series A 117.1 (1995): 94-97. |
dipy.sims.voxel.
cylinders_and_ball_soderman
(gtab, tau, radii=[0.005, 0.005], D=0.0007, S0=1.0, angles=[(0, 0), (90, 0)], fractions=[35, 35], snr=20)Calculates the three-dimensional signal attenuation E(q) originating from within a cylinder of radius R using the Soderman approximation [1]. The diffusion signal is assumed to be separable perpendicular and parallel to the cylinder axis [2]. This function is basically an extension of the ball and stick model. Setting the radius to zero makes them equivalent.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | (1, 2, 3) Söderman, Olle, and Bengt Jönsson. “Restricted diffusion in cylindrical geometry.” Journal of Magnetic Resonance, Series A 117.1 (1995): 94-97. |
[2] | (1, 2) Assaf, Yaniv, et al. “New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter.” Magnetic Resonance in Medicine 52.5 (2004): 965-978. |
dipy.sims.voxel.
dki_design_matrix
(gtab)Constructs B design matrix for DKI
Returns: |
|
---|
dipy.sims.voxel.
dki_signal
(gtab, dt, kt, S0=150, snr=None)Simulated signal based on the diffusion and diffusion kurtosis tensors of a single voxel. Simulations are preformed assuming the DKI model.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | R. Neto Henriques et al., “Exploring the 3D geometry of the diffusion kurtosis tensor - Impact on the development of robust tractography procedures and novel biomarkers”, NeuroImage (2015) 111, 85-99. |
dipy.sims.voxel.
dot
(a, b, out=None)Dot product of two arrays. Specifically,
If both a and b are 1-D arrays, it is inner product of vectors (without complex conjugation).
If both a and b are 2-D arrays, it is matrix multiplication,
but using matmul()
or a @ b
is preferred.
If either a or b is 0-D (scalar), it is equivalent to multiply()
and using numpy.multiply(a, b)
or a * b
is preferred.
If a is an N-D array and b is a 1-D array, it is a sum product over the last axis of a and b.
If a is an N-D array and b is an M-D array (where M>=2
), it is a
sum product over the last axis of a and the second-to-last axis of b:
dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
Parameters: |
|
---|---|
Returns: |
|
Raises: |
|
See also
vdot
tensordot
einsum
matmul
Examples
>>> np.dot(3, 4)
12
Neither argument is complex-conjugated:
>>> np.dot([2j, 3j], [2j, 3j])
(-13+0j)
For 2-D arrays it is the matrix product:
>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],
[2, 2]])
>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128
dipy.sims.voxel.
kurtosis_element
(D_comps, frac, ind_i, ind_j, ind_k, ind_l, DT=None, MD=None)Computes the diffusion kurtosis tensor element (with indexes i, j, k and l) based on the individual diffusion tensor components of a multicompartmental model.
Parameters: |
|
---|---|
Returns: |
|
Notes
wijkl is calculated using equation 8 given in [1]
References
[1] | (1, 2) R. Neto Henriques et al., “Exploring the 3D geometry of the diffusion kurtosis tensor - Impact on the development of robust tractography procedures and novel biomarkers”, NeuroImage (2015) 111, 85-99. |
dipy.sims.voxel.
multi_tensor
(gtab, mevals, S0=1.0, angles=[(0, 0), (90, 0)], fractions=[50, 50], snr=20)Simulate a Multi-Tensor signal.
Parameters: |
|
---|---|
Returns: |
|
Examples
>>> import numpy as np
>>> from dipy.sims.voxel import multi_tensor
>>> from dipy.data import get_fnames
>>> from dipy.core.gradients import gradient_table
>>> from dipy.io.gradients import read_bvals_bvecs
>>> fimg, fbvals, fbvecs = get_fnames('small_101D')
>>> bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
>>> gtab = gradient_table(bvals, bvecs)
>>> mevals=np.array(([0.0015, 0.0003, 0.0003],[0.0015, 0.0003, 0.0003]))
>>> e0 = np.array([1, 0, 0.])
>>> e1 = np.array([0., 1, 0])
>>> S = multi_tensor(gtab, mevals)
dipy.sims.voxel.
multi_tensor_dki
(gtab, mevals, S0=1.0, angles=[(90.0, 0.0), (90.0, 0.0)], fractions=[50, 50], snr=20)Simulate the diffusion-weight signal, diffusion and kurtosis tensors based on the DKI model
Parameters: |
|
---|---|
Returns: |
|
Notes
Simulations are based on multicompartmental models which assumes that tissue is well described by impermeable diffusion compartments characterized by their only diffusion tensor. Since simulations are based on the DKI model, coefficients larger than the fourth order of the signal’s taylor expansion approximation are neglected.
References
[1] | R. Neto Henriques et al., “Exploring the 3D geometry of the diffusion kurtosis tensor - Impact on the development of robust tractography procedures and novel biomarkers”, NeuroImage (2015) 111, 85-99. |
Examples
>>> import numpy as np
>>> from dipy.sims.voxel import multi_tensor_dki
>>> from dipy.data import get_fnames
>>> from dipy.core.gradients import gradient_table
>>> from dipy.io.gradients import read_bvals_bvecs
>>> fimg, fbvals, fbvecs = get_fnames('small_64D')
>>> bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
>>> bvals_2s = np.concatenate((bvals, bvals * 2), axis=0)
>>> bvecs_2s = np.concatenate((bvecs, bvecs), axis=0)
>>> gtab = gradient_table(bvals_2s, bvecs_2s)
>>> mevals = np.array([[0.00099, 0, 0],[0.00226, 0.00087, 0.00087]])
>>> S, dt, kt = multi_tensor_dki(gtab, mevals)
dipy.sims.voxel.
multi_tensor_msd
(mf, mevals=None, tau=0.025330295910584444)Simulate a Multi-Tensor rtop.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | Cheng J., “Estimation and Processing of Ensemble Average Propagator and Its Features in Diffusion MRI”, PhD Thesis, 2012. |
dipy.sims.voxel.
multi_tensor_odf
(odf_verts, mevals, angles, fractions)Simulate a Multi-Tensor ODF.
Parameters: |
|
---|---|
Returns: |
|
Examples
Simulate a MultiTensor ODF with two peaks and calculate its exact ODF.
>>> import numpy as np
>>> from dipy.sims.voxel import multi_tensor_odf, all_tensor_evecs
>>> from dipy.data import get_sphere
>>> sphere = get_sphere('symmetric724')
>>> vertices, faces = sphere.vertices, sphere.faces
>>> mevals = np.array(([0.0015, 0.0003, 0.0003],[0.0015, 0.0003, 0.0003]))
>>> angles = [(0, 0), (90, 0)]
>>> odf = multi_tensor_odf(vertices, mevals, angles, [50, 50])
dipy.sims.voxel.
multi_tensor_pdf
(pdf_points, mevals, angles, fractions, tau=0.025330295910584444)Simulate a Multi-Tensor ODF.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | Cheng J., “Estimation and Processing of Ensemble Average Propagator and its Features in Diffusion MRI”, PhD Thesis, 2012. |
dipy.sims.voxel.
multi_tensor_rtop
(mf, mevals=None, tau=0.025330295910584444)Simulate a Multi-Tensor rtop.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | Cheng J., “Estimation and Processing of Ensemble Average Propagator and Its Features in Diffusion MRI”, PhD Thesis, 2012. |
dipy.sims.voxel.
single_tensor
(gtab, S0=1, evals=None, evecs=None, snr=None)Simulated Q-space signal with a single tensor.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | M. Descoteaux, “High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation and Tractography”, PhD thesis, University of Nice-Sophia Antipolis, p. 42, 2008. |
[2] | E. Stejskal and J. Tanner, “Spin diffusion measurements: spin echos in the presence of a time-dependent field gradient”, Journal of Chemical Physics, nr. 42, pp. 288–292, 1965. |
dipy.sims.voxel.
single_tensor_msd
(evals=None, tau=0.025330295910584444)Simulate a Multi-Tensor rtop.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | Cheng J., “Estimation and Processing of Ensemble Average Propagator and Its Features in Diffusion MRI”, PhD Thesis, 2012. |
dipy.sims.voxel.
single_tensor_odf
(r, evals=None, evecs=None)Simulated ODF with a single tensor.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | Aganj et al., “Reconstruction of the Orientation Distribution Function in Single- and Multiple-Shell q-Ball Imaging Within Constant Solid Angle”, Magnetic Resonance in Medicine, nr. 64, pp. 554–566, 2010. |
dipy.sims.voxel.
single_tensor_pdf
(r, evals=None, evecs=None, tau=0.025330295910584444)Simulated ODF with a single tensor.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | Cheng J., “Estimation and Processing of Ensemble Average Propagator and Its Features in Diffusion MRI”, PhD Thesis, 2012. |
dipy.sims.voxel.
single_tensor_rtop
(evals=None, tau=0.025330295910584444)Simulate a Single-Tensor rtop.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | Cheng J., “Estimation and Processing of Ensemble Average Propagator and Its Features in Diffusion MRI”, PhD Thesis, 2012. |
dipy.sims.voxel.
sphere2cart
(r, theta, phi)Spherical to Cartesian coordinates
This is the standard physics convention where theta is the inclination (polar) angle, and phi is the azimuth angle.
Imagine a sphere with center (0,0,0). Orient it with the z axis running south-north, the y axis running west-east and the x axis from posterior to anterior. theta (the inclination angle) is the angle to rotate from the z-axis (the zenith) around the y-axis, towards the x axis. Thus the rotation is counter-clockwise from the point of view of positive y. phi (azimuth) gives the angle of rotation around the z-axis towards the y axis. The rotation is counter-clockwise from the point of view of positive z.
Equivalently, given a point P on the sphere, with coordinates x, y, z, theta is the angle between P and the z-axis, and phi is the angle between the projection of P onto the XY plane, and the X axis.
Geographical nomenclature designates theta as ‘co-latitude’, and phi as ‘longitude’
Parameters: |
|
---|---|
Returns: |
|
Notes
See these pages:
for excellent discussion of the many different conventions possible. Here we use the physics conventions, used in the wikipedia page.
Derivations of the formulae are simple. Consider a vector x, y, z of length r (norm of x, y, z). The inclination angle (theta) can be found from: cos(theta) == z / r -> z == r * cos(theta). This gives the hypotenuse of the projection onto the XY plane, which we will call Q. Q == r*sin(theta). Now x / Q == cos(phi) -> x == r * sin(theta) * cos(phi) and so on.
We have deliberately named this function sphere2cart
rather than
sph2cart
to distinguish it from the Matlab function of that
name, because the Matlab function uses an unusual convention for the
angles that we did not want to replicate. The Matlab function is
trivial to implement with the formulae given in the Matlab help.
dipy.sims.voxel.
sticks_and_ball
(gtab, d=0.0015, S0=1.0, angles=[(0, 0), (90, 0)], fractions=[35, 35], snr=20)Simulate the signal for a Sticks & Ball model.
Parameters: |
|
---|---|
Returns: |
|
References
[1] | Behrens et al., “Probabilistic diffusion tractography with multiple fiber orientations: what can we gain?”, Neuroimage, 2007. |
dipy.sims.voxel.
vec2vec_rotmat
(u, v)rotation matrix from 2 unit vectors
u, v being unit 3d vectors return a 3x3 rotation matrix R than aligns u to v.
In general there are many rotations that will map u to v. If S is any rotation using v as an axis then R.S will also map u to v since (S.R)u = S(Ru) = Sv = v. The rotation R returned by vec2vec_rotmat leaves fixed the perpendicular to the plane spanned by u and v.
The transpose of R will align v to u.
Parameters: |
|
---|---|
Returns: |
|
Examples
>>> import numpy as np
>>> from dipy.core.geometry import vec2vec_rotmat
>>> u=np.array([1,0,0])
>>> v=np.array([0,1,0])
>>> R=vec2vec_rotmat(u,v)
>>> np.dot(R,u)
array([ 0., 1., 0.])
>>> np.dot(R.T,v)
array([ 1., 0., 0.])