SlrWithQbxFlow
Streamline-based linear registration.
For efficiency we apply the registration on cluster centroids and
remove small clusters.
Parameters
static_files : string
moving_files : string
x0 : string, optional
rigid, similarity or affine transformation model (default affine)
- rm_small_clusters : int, optional
- Remove clusters that have less than rm_small_clusters
(default 50)
- qbx_thr : variable int, optional
- Thresholds for QuickBundlesX (default [40, 30, 20, 15])
- num_threads : int, optional
- Number of threads. If None (default) then all available threads
will be used. Only metrics using OpenMP will use this variable.
- greater_than : int, optional
- Keep streamlines that have length greater than
this value (default 50)
- less_than : int, optional
- Keep streamlines have length less than this value (default 250)
- np_pts : int, optional
- Number of points for discretizing each streamline (default 20)
- progressive : boolean, optional
- (default True)
- out_dir : string, optional
- Output directory (default input file directory)
- out_moved : string, optional
- Filename of moved tractogram (default ‘moved.trk’)
- out_affine : string, optional
- Filename of affine for SLR transformation (default ‘affine.txt’)
- out_stat_centroids : string, optional
- Filename of static centroids (default ‘static_centroids.trk’)
- out_moving_centroids : string, optional
- Filename of moving centroids (default ‘moving_centroids.trk’)
- out_moved_centroids : string, optional
- Filename of moved centroids (default ‘moved_centroids.trk’)
Notes
The order of operations is the following. First short or long
streamlines are removed. Second the tractogram or a random selection
of the tractogram is clustered with QuickBundlesX. Then SLR
[Garyfallidis15] is applied.
References
registration of white-matter fascicles in the space of
streamlines”, NeuroImage, 117, 124–140, 2015
[Garyfallidis14] | Garyfallidis et al., “Direct native-space fiber |
bundle alignment for group comparisons”, ISMRM, 2014.
[Garyfallidis17] | Garyfallidis et al. Recognition of white matter |
bundles using local and global streamline-based registration
and clustering, Neuroimage, 2017.