dipy_denoise_patch2self [-h] [–model str] [–verbose] [–out_dir str] [–out_denoised str] input_files bval_files Workflow for Patch2Self denoising method. It applies patch2self denoising on each file found by ‘globing’ input_files Path to the input volumes. This path may contain wildcards to process multiple inputs at once.
bval_files bval file associated with the diffusion data. show this help message and exit This will determine the algorithm used to solve the set of linear equations underlying this model. If it is a string it needs to be one of the following: {‘ols’, ‘ridge’, ‘lasso’}. Otherwise, it can be an object that inherits from dipy.optimize.SKLearnLinearSolver or an object with a similar interface from Scikit-Learn: sklearn.linear_model.LinearRegression, sklearn.linear_model.Lasso or sklearn.linear_model.Ridge and other objects that inherit from sklearn.base.RegressorMixin. Default: ‘ols’. Show progress of Patch2Self and time taken. Output directory (default current directory) Name of the resulting denoised volume (default: dwi_patch2self.nii.gz) Fadnavis, J. Batson, E. Garyfallidis, Patch2Self: Denoising Diffusion MRI with Self-supervised Learning, Advances in Neural Information Processing Systems 33 (2020) Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.dipy_denoise_patch2self
Usage
input_file
and bval_file
. It saves the results in a directory specified by out_dir
.Positional Arguments
Optional Arguments
Output Arguments(Optional)
References