dipy_gibbs_ringing [-h] [–slice_axis int] [–n_points int] [–num_processes int] [–out_dir str] [–out_unring str] input_files Workflow for applying Gibbs Ringing method. input_files Path to the input volumes. This path may contain wildcards to process multiple inputs at once. show this help message and exit Data axis corresponding to the number of acquired slices. Could be (0, 1, or 2): for example, a value of 2 would mean the third axis. Number of neighbour points to access local TV (see note). Split the calculation to a pool of children processes. Only applies to 3D or 4D data arrays. Default is 1. If < 0 the maximal number of cores minus Output directory. (default current directory) Name of the resulting denoised volume. Neto Henriques, R., 2018. Advanced Methods for Diffusion MRIData Analysis and their Application to the Healthy Ageing Brain(Doctoral thesis). https://doi.org/10.17863/CAM.29356 Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringingartifact removal based on local subvoxel-shifts. Magn Reson Med. 2016doi: 10.1002/mrm.26054. Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 1-18, 2014.dipy_gibbs_ringing
Usage
Positional Arguments
Optional Arguments
num_processes + 1
is used (enter -1 to use as many cores as possible). 0 raises an error.Output Arguments(Optional)
References