This tutorial walks through the steps for reproducing Bundle Analytics [Chandio20]
results on Parkinson’s Progression Markers Initiative (PPMI) [Marek11] data derivatives.
Bundle Analytics is a framework for comparing bundle profiles and shapes of
different groups. In this example, we will be comparing healthy controls and
patients with parkinson’s disease. We will be using PPMI data derivatives generated
using DIPY [Garyfallidis14]. First we need to download streamline atlas [Yeh18] with 30 white matter bundles
in MNI space from For this tutorial we will be using a test sample of DIPY Processed Parkinson’s
Progression Markers Initiative (PPMI) Data Derivatives. It can be downloaded
from the link below Note If you prefer to run experiments on the complete dataset to reproduce the paper [Chandio20]
results please see the “Reproducing results on larger dataset” section at end of
the page for more information. There are two parts of Bundle Analytics group comparison framework,
bundle profile analysis and bundle shape similarity analysis. For generating bundle profile data (saved as .h5 files):
You must have downloaded bundles folder of 30 atlas bundles and subjects folder
with PPMI data derivatives. Following workflows require specific input directory structure but don’t worry
as data you downloaded is already in the required format. We will be using Where, The And each subject folder has the following structure: If you want to run this tutorial on your data, make sure that the directory structure is
The same as shown above. Where, Note Make sure all the output folders are empty and do not get overridden. Create an Run the following workflow: For running Linear Mixed Models (LMM) on generated .h5 files from the previous
step: Create an And run the following workflow: This workflow will generate 30 bundles group comparison plots per anatomical measures.
Plots will look like the following example: We can also visualize and highlight the specific location of group differences on the bundle by providing
output p-values file from dipy_buan_lmm workflow. The user can specify at what level of
significance they want to see group differences by providing threshold value of p-value to Run the following commandline for visualizing group differences on the model bundle: Where, The output of this commandline is an interactive visualization window. Example snapshot: Let’s use a different highlight color this time on Create an Run the following workflow: This workflow will generate 30 bundles shape similarity plots. Shape similarity
score ranges between 0-1, where 1 being highest similarity and 0 being lowest.
Plots will look like the following example: Complete dataset of DIPY Processed Parkinson’s Progression Markers Initiative (PPMI)
Data Derivatives can be downloaded from the link below: Please note this is a large data file and might take some time to run. If you
only want to test the workflows use the test sample data. All steps will be the same as mentioned above except this time the data donwloaded
will have different folder name For more information about each command line, you can go to
https://github.com/dipy/dipy/blob/master/dipy/workflows/stats.py If you are using any of these commands do cite the relevant papers. Chandio, B.Q., Risacher, S.L., Pestilli, F., Bullock, D.,
Yeh, FC., Koudoro, S., Rokem, A., Harezlak, J., and Garyfallidis, E.
Bundle analytics, a computational framework for investigating the
shapes and profiles of brain pathways across populations.
Sci Rep 10, 17149 (2020) Marek, Kenneth and Jennings, Danna and Lasch, Shirley and Siderowf,
Andrew and Tanner, Caroline and Simuni, Tanya and Coffey, Chris and Kieburtz,
Karl and Flagg, Emily and Chowdhury, Sohini and others.
The parkinson progression marker initiative (PPMI).
Progress in neurobiology, 2011. Garyfallidis, E., M. Brett, B. Amirbekian, A. Rokem,
S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith.
“DIPY, a library for the analysis of diffusion MRI data”.
Frontiers in Neuroinformatics, 1-18, 2014. Yeh F.C., Panesar S., Fernandes D., Meola A., Yoshino M.,
Fernandez-Miranda J.C., Vettel J.M., Verstynen T.
Population-averaged atlas of the macroscale human structural
connectome and its network topology.
Neuroimage, 2018.BUndle ANalytics (BUAN) framework
Group Comparison of Bundle Profiles
bundles
folder you downloaded from streamline atlas link and subjects_small
folder
downloaded from test data link.bundles
folder has following model bundles:bundles/
├── AF_L.trk
├── AF_R.trk
├── CCMid.trk
├── CC_ForcepsMajor.trk
├── CC_ForcepsMinor.trk
├── CST_L.trk
├── CST_R.trk
├── EMC_L.trk
├── EMC_R.trk
├── FPT_L.trk
├── FPT_R.trk
├── IFOF_L.trk
├── IFOF_R.trk
├── ILF_L.trk
├── ILF_R.trk
├── MLF_L.trk
├── MLF_R.trk
├── ML_L.trk
├── ML_R.trk
├── MdLF_L.trk
├── MdLF_R.trk
├── OPT_L.trk
├── OPT_R.trk
├── OR_L.trk
├── OR_R.trk
├── STT_L.trk
├── STT_R.trk
├── UF_L.trk
├── UF_R.trk
└── V.trk
subjects_small
directory has following structure:subjects_small
├── control
│ ├── 3805
│ │ ├── anatomical_measures
│ │ ├── org_bundles
│ │ └── rec_bundles
│ ├── 3806
│ │ ├── anatomical_measures
│ │ ├── org_bundles
│ │ └── rec_bundles
│ ├── 3809
│ │ ├── anatomical_measures
│ │ ├── org_bundles
│ │ └── rec_bundles
│ ├── 3850
│ │ ├── anatomical_measures
│ │ ├── org_bundles
│ │ └── rec_bundles
│ └── 3851
│ ├── anatomical_measures
│ ├── org_bundles
│ └── rec_bundles
└── patient
├── 3383
│ ├── anatomical_measures
│ ├── org_bundles
│ └── rec_bundles
├── 3385
│ ├── anatomical_measures
│ ├── org_bundles
│ └── rec_bundles
├── 3387
│ ├── anatomical_measures
│ ├── org_bundles
│ └── rec_bundles
├── 3392
│ ├── anatomical_measures
│ ├── org_bundles
│ └── rec_bundles
└── 3552
├── anatomical_measures
├── org_bundles
└── rec_bundles
├── anatomical_measures
│ ├── ad.nii.gz
│ ├── csa_peaks.pam5
│ ├── fa.nii.gz
│ ├── md.nii.gz
│ └── rd.nii.gz
├── org_bundles
│ ├── streamlines_moved_AF_L__labels__recognized_orig.trk
│ ├── streamlines_moved_AF_R__labels__recognized_orig.trk
│ ├── streamlines_moved_CCMid__labels__recognized_orig.trk
│ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
│ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
│ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
│ ├── streamlines_moved_UF_L__labels__recognized_orig.trk
│ ├── streamlines_moved_UF_R__labels__recognized_orig.trk
│ └── streamlines_moved_V__labels__recognized_orig.trk
└── rec_bundles
├── moved_AF_L__recognized.trk
├── moved_AF_R__recognized.trk
├── moved_CCMid__recognized.trk
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
├── moved_UF_L__recognized.trk
├── moved_UF_R__recognized.trk
└── moved_V__recognized.trk
anatomical_measures
folder has nifti files for DTI measures such as
FA, MD, and CSA/CSD pam5 files. The org_bundles
folder has extracted bundles in native space.
The rec_bundles
folder has extracted bundles in common space.out_dir
folder (eg: bundle_profiles):mkdir bundle_profiles
dipy_buan_profiles bundles/ subjects_small/ --out_dir "bundle_profiles"
out_dir
folder (eg: lmm_plots):mkdir lmm_plots
dipy_buan_lmm "bundle_profiles/*" --out_dir "lmm_plots"
buan_thr
(default 0.05).
The color of the highlighted area can be specified by providing RGB color values to buan_highlight
(Default Red)dipy_horizon bundles/AF_L.trk lmm_plots/AF_L_fa_pvalues.npy --buan --buan_thr 0.05
AF_L.trk `` is located in your model bundle folder ``bundles
and
AF_L_fa_pvalues.npy
is saved in output folder lmm_plots
of dipy_buan_lmm workflowCST_L
bundle:dipy_horizon bundles/CST_L.trk lmm_plots/CST_L_fa_pvalues.npy --buan --buan_thr 0.05 --buan_highlight 1 1 0
Shape similarity of specific bundles across the populations
out_dir
folder (eg: sm_plots):mkdir sm_plots
dipy_buan_shapes subjects_small/ --out_dir "sm_plots"
Reproducing results on larger dataset:
subjects
instead of subjects_small
.