Details about datasets available in DIPY are described in the table below: The list of datasets can be retrieved using: To retrieve all datasets, the following workflow can be run: If you want to download a particular dataset, you can do: or:Data
Datasets
Name
Synthetic/Phantom/Human/Animal
Data features (structural; diffusion; label information)
Scanner
DIPY name
Citations
Tractogram file formats examples
Synthetic
Tractogram file formats (`.dpy`, `.fib`, `.tck`, `.trk`)
bundle_file_formats_example
Rheault, F. (2019). Bundles for tractography file format testing and example (Version 1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3352379
CENIR HCP-like dataset
Multi-shell data: b-vals: [200, 400, 1000, 2000, 3000] (s/mm^2); [20, 20, 202, 204, 206] gradient directions; Corrected for Eddy currents
cenir_multib
CFIN dataset
T1; Multi-shell data: b-vals: [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000] (s/mm^2); 496 gradient directions
cfin_multib
Hansen, B., Jespersen, S.. Data for evaluation of fast kurtosis strategies, b-value optimization and exploration of diffusion MRI contrast. Sci Data 3, 160072 (2016). doi:10.1038/sdata.2016.72
Gold standard streamlines IO testing
Synthetic
Tractogram file formats (`.dpy`, `.fib`, `.tck`, `.trk`)
gold_standard_io
Rheault, F. (2019). Gold standard for tractogram io testing (Version 1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.2651349
HCP842 bundle atlas
Human
Whole brain/bundle-wise tractograms in MNI space; 80 bundles
Human Connectome Project (HCP) scanner
bundle_atlas_hcp842
Garyfallidis, E., et al. Recognition of white matter bundles using local and global streamline-based registration and clustering. NeuroImage 170 (2017): 283-297; Yeh, F.-C., et al. Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage 178 (2018): 57-68. figshare.com/articles/Advanced_Atlas_of_80_Bundles_in_MNI_space/7375883
HCP bundle FA
Human
Fractional Anisotropy (FA); 2 bundles
bundle_fa_hcp
HCP tractogram
Human
Whole brain tractogram
Human Connectome Project (HCP) scanner
target_tractogram_hcp
ISBI 2013
Phantom
Multi shell data: b-vals: [0, 1500, 2500] (s/mm^2); 64 gradient directions
isbi2013_2shell
Daducci, A., et al. Quantitative Comparison of Reconstruction Methods for Intra-Voxel Fiber Recovery From Diffusion MRI. IEEE Transactions on Medical Imaging, vol. 33, no. 2, pp. 384-399, Feb. 2014. HARDI reconstruction challenge 2013
IVIM dataset
Human
Multi shell data: b-vals: [0, 10, 20, 30, 40, 60, 80, 100, 120, 140, 160, 180, 200, 300, 400, 500, 600, 700, 800, 900, 1000] (s/mm^2); 21 gradient directions
fetch_ivim
Peterson, Eric (2016): IVIM dataset. figshare. Dataset. figshare.com/articles/dataset/IVIM_dataset/3395704/1
MNI template
Human
MNI 2009a T1, T2; 2009c T1, T1 mask
mni_template
Fonov, V.S., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., BDCG. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, Volume 54, Issue 1, January 2011, ISSN 1053–8119, doi:10.1016/j.neuroimage.2010.07.033; Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., Collins, D.L. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood, NeuroImage, Volume 47, Supplement 1, July 2009, Page S102 Organization for Human Brain Mapping 2009 Annual Meeting, doi:10.1016/S1053-8119(09)70884-5 ICBM 152 Nonlinear atlases version 2009
qt-dMRI C57Bl6 mice dataset
Animal
2 C57Bl6 mice test-retest qt-dMRI; Corpus callosum (CC) bundle masks
qtdMRI_test_retest_2subjects
Wassermann, D., Santin, M., Philippe, A.-C., Fick, R., Deriche, R., Lehericy, S., Petiet, A. (2017). Test-Retest qt-dMRI datasets for "Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time" [Data set]. Zenodo. http://doi.org/10.5281/zenodo.996889
SCIL b0
b0
GE (1.5, 3 T), Philips (3 T); Siemens (1.5, 3 T)
scil_b0
Sherbrooke Connectivity Imaging Lab (SCIL)
Sherbrooke 3 shells
Human
Multi shell data: b-vals: [0, 1000, 2000; 3500] (s/mm^2); 193 gradient directions
sherbrooke_3shell
Sherbrooke Connectivity Imaging Lab (SCIL)
SNAIL dataset
2 subjects: T1; Fractional Anisotropy (FA); 27 bundles
bundles_2_subjects
Stanford HARDI
Human
HARDI-like multi-shell data: b-vals: [0, 2000] (s/mm^2); 160 gradient directions
GE Discovery MR750
stanford_hardi
Human brain diffusion-weighted MRI, collected with high diffusion-weighting angular resolution and repeated measurements at multiple diffusion-weighting strengths. Rokem, A., Yeatman, J.D., Pestilli, F., Kay, K.N., Mezer A., van der Walt, S., and Wandell, B.A. (2015) Evaluating the Accuracy of Diffusion MRI Models in White Matter. PLoS ONE 10(4): e0123272. doi:10.1371/journal.pone.0123272
Stanford labels
Human
Gray matter region labels
GE Discovery MR750
stanford_labels
Human brain diffusion-weighted MRI, collected with high diffusion-weighting angular resolution and repeated measurements at multiple diffusion-weighting strengths. Rokem, A., Yeatman, J.D., Pestilli, F., Kay, K.N., Mezer A., van der Walt, S., and Wandell, B.A. (2015) Evaluating the Accuracy of Diffusion MRI Models in White Matter. PLoS ONE 10(4): e0123272. doi:10.1371/journal.pone.0123272
Stanford PVE maps
Human
Partial Volume Effects (PVE) maps: Gray matter (GM), White matter (WM); Cerebrospinal Fluid (CSF)
GE Discovery MR750
fetch_stanford_pve_maps
Human brain diffusion-weighted MRI, collected with high diffusion-weighting angular resolution and repeated measurements at multiple diffusion-weighting strengths. Rokem, A., Yeatman, J.D., Pestilli, F., Kay, K.N., Mezer A., van der Walt, S., and Wandell, B.A. (2015) Evaluating the Accuracy of Diffusion MRI Models in White Matter. PLoS ONE 10(4): e0123272. doi:10.1371/journal.pone.0123272
Stanford T1
Human
T1
GE Discovery MR750
stanford_t1
Human brain diffusion-weighted MRI, collected with high diffusion-weighting angular resolution and repeated measurements at multiple diffusion-weighting strengths. Rokem, A., Yeatman, J.D., Pestilli, F., Kay, K.N., Mezer A., van der Walt, S., and Wandell, B.A. (2015) Evaluating the Accuracy of Diffusion MRI Models in White Matter. PLoS ONE 10(4): e0123272. doi:10.1371/journal.pone.0123272
SyN data
Human
T1; b0
syn_data
Taiwan NTU DSI
DSI-like data; Multi-shell data: b-vals: [0, 308 ,615, 923, 1231, 1538, 1538, 1846, 1846, 2462, 2769, 3077, 3385, 3692, 4000] (s/mm^2); 203 gradient directions
Siemens Trio
taiwan_ntu_dsi
National Taiwan University (NTU) Hospital Advanced Biomedical MRI Lab DSI MRI data
Tissue data
Human
T1; denoised T1; Power map
tissue_data
from dipy.workflows.io import FetchFlow
available_data = FetchFlow.get_fetcher_datanames().keys()
from dipy.workflows.io import FetchFlow
fetch_flow = FetchFlow()
with TemporaryDirectory() as out_dir:
fetch_flow.run(['all'])
from dipy.workflows.io import FetchFlow
fetch_flow = FetchFlow()
with TemporaryDirectory() as out_dir:
fetch_flow.run(['bundle_fa_hcp'])
from dipy.data import fetch_bundle_fa_hcp
files, folder = fetch_bundle_fa_hcp()