Note
Click here to download the full example code
This example explains how we can use BUAN [Chandio2020] to calculate shape similarity between two given bundles. Where, shape similarity score of 1 means two bundles are extremely close in shape and 0 implies no shape similarity whatsoever.
Shape similarity score can be used to compare populations or individuals. It can also serve as a quality assurance metric, to validate streamline registration quality, bundle extraction quality by calculating output with a reference bundle or other issues with pre-processing by calculating shape dissimilarity with a reference bundle.
First import the necessary modules.
import numpy as np
from dipy.viz import window, actor
from dipy.segment.bundles import bundle_shape_similarity
from dipy.segment.bundles import select_random_set_of_streamlines
from dipy.data import two_cingulum_bundles
To show the concept we will use two pre-saved cingulum bundle. Let’s start by fetching the data.
cb_subj1, _ = two_cingulum_bundles()
Let’s create two streamline sets (bundles) from same bundle cb_subj1 by randomly selecting 60 streamlines two times.
rng = np.random.RandomState()
bundle1 = select_random_set_of_streamlines(cb_subj1, 60, rng=None)
bundle2 = select_random_set_of_streamlines(cb_subj1, 60, rng=None)
Now, let’s visualize two bundles.
def show_both_bundles(bundles, colors=None, show=True, fname=None):
scene = window.Scene()
scene.SetBackground(1., 1, 1)
for (i, bundle) in enumerate(bundles):
color = colors[i]
streamtube_actor = actor.streamtube(bundle, color, linewidth=0.3)
streamtube_actor.RotateX(-90)
streamtube_actor.RotateZ(90)
scene.add(streamtube_actor)
if show:
window.show(scene)
if fname is not None:
window.record(scene, n_frames=1, out_path=fname, size=(900, 900))
show_both_bundles([bundle1, bundle2], colors=[(1, 0, 0), (0, 1, 0)],
show=False, fname="two_bundles.png")
Calculate shape similarity score between two bundles.
0 cluster_thr because we want to use all streamlines and not the centroids of clusters.
clust_thr = [0]
Threshold indicates how strictly we want two bundles to be similar in shape.
threshold = 5
ba_score = bundle_shape_similarity(bundle1, bundle2, rng, clust_thr, threshold)
print("Shape similarity score = ", ba_score)
Shape similarity score = 0.6416666666666666
Let’s change the value of threshold to 10.
threshold = 10
ba_score = bundle_shape_similarity(bundle1, bundle2, rng, clust_thr, threshold)
print("Shape similarity score = ", ba_score)
Shape similarity score = 0.9583333333333333
Higher value of threshold gives us higher shape similarity score as it is more lenient.
Chandio, B.Q., Risacher, S.L., Pestilli, F., Bullock, D., Yeh, FC., Koudoro, S., Rokem, A., Harezlak, J., and Garyfallidis, E. Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations. Sci Rep 10, 17149 (2020)
Total running time of the script: ( 0 minutes 0.124 seconds)